logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000002545_00384

You are here: Home > Sequence: MGYG000002545_00384

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Faecalibacterium prausnitzii_G
Lineage Bacteria; Firmicutes_A; Clostridia; Oscillospirales; Ruminococcaceae; Faecalibacterium; Faecalibacterium prausnitzii_G
CAZyme ID MGYG000002545_00384
CAZy Family GT4
CAZyme Description D-inositol-3-phosphate glycosyltransferase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
375 42130.72 6.9417
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000002545 2833887 Isolate Ireland Europe
Gene Location Start: 395751;  End: 396878  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000002545_00384.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 197 327 2.2e-20 0.81875

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03801 GT4_PimA-like 1.04e-28 26 367 23 366
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
cd03817 GT4_UGDG-like 5.53e-28 100 366 101 372
UDP-Glc:1,2-diacylglycerol 3-a-glucosyltransferase and similar proteins. This family is most closely related to the GT1 family of glycosyltransferases. UDP-glucose-diacylglycerol glucosyltransferase (EC 2.4.1.337, UGDG; also known as 1,2-diacylglycerol 3-glucosyltransferase) catalyzes the transfer of glucose from UDP-glucose to 1,2-diacylglycerol forming 3-D-glucosyl-1,2-diacylglycerol.
cd03814 GT4-like 1.35e-24 101 369 102 363
glycosyltransferase family 4 proteins. This family is most closely related to the GT4 family of glycosyltransferases and includes a sequence annotated as alpha-D-mannose-alpha(1-6)phosphatidyl myo-inositol monomannoside transferase from Bacillus halodurans. Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in bacteria and eukaryotes.
COG0438 RfaB 4.85e-23 5 369 3 377
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd03798 GT4_WlbH-like 5.68e-18 106 356 115 363
Bordetella parapertussis WlbH and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. Staphylococcus aureus CapJ may be involved in capsule polysaccharide biosynthesis. WlbH in Bordetella parapertussis has been shown to be required for the biosynthesis of a trisaccharide that, when attached to the B. pertussis lipopolysaccharide (LPS) core (band B), generates band A LPS.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AXA81104.1 9.44e-284 1 375 36 410
QIS84029.1 1.31e-70 1 367 1 365
AUH48077.1 1.31e-70 1 367 1 365
AMP60745.1 1.31e-70 1 367 1 365
AOM19696.1 1.31e-70 1 367 1 365

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
5D00_A 7.52e-11 188 329 190 329
Crystalstructure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate and UMP [Bacillus subtilis subsp. subtilis str. 168],5D00_B Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate and UMP [Bacillus subtilis subsp. subtilis str. 168],5D01_A Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate [Bacillus subtilis subsp. subtilis str. 168],5D01_B Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate [Bacillus subtilis subsp. subtilis str. 168]
6N1X_A 7.52e-09 176 295 177 294
ChainA, Glycosyltransferase [Staphylococcus aureus subsp. aureus CN1]
6D9T_A 8.02e-09 176 295 193 310
BshAfrom Staphylococcus aureus complexed with UDP [Staphylococcus aureus]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
C7R101 1.01e-14 2 367 9 413
D-inositol 3-phosphate glycosyltransferase OS=Jonesia denitrificans (strain ATCC 14870 / DSM 20603 / BCRC 15368 / CIP 55.134 / JCM 11481 / NBRC 15587 / NCTC 10816 / Prevot 55134) OX=471856 GN=mshA PE=3 SV=1
D5USX8 1.14e-12 30 364 47 411
D-inositol 3-phosphate glycosyltransferase OS=Tsukamurella paurometabola (strain ATCC 8368 / DSM 20162 / CCUG 35730 / CIP 100753 / JCM 10117 / KCTC 9821 / NBRC 16120 / NCIMB 702349 / NCTC 13040) OX=521096 GN=mshA PE=3 SV=1
P42982 4.08e-10 188 329 188 327
N-acetyl-alpha-D-glucosaminyl L-malate synthase OS=Bacillus subtilis (strain 168) OX=224308 GN=bshA PE=1 SV=2
A4X1R6 3.77e-07 12 369 71 466
D-inositol 3-phosphate glycosyltransferase OS=Salinispora tropica (strain ATCC BAA-916 / DSM 44818 / CNB-440) OX=369723 GN=mshA PE=3 SV=1
A6LKE9 2.50e-06 111 367 136 408
Probable sucrose-phosphate synthase OS=Thermosipho melanesiensis (strain DSM 12029 / CIP 104789 / BI429) OX=391009 GN=Tmel_0533 PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000043 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000002545_00384.