logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000002445_01378

You are here: Home > Sequence: MGYG000002445_01378

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Clostridium_Q sp003024715
Lineage Bacteria; Firmicutes_A; Clostridia; Lachnospirales; Lachnospiraceae; Clostridium_Q; Clostridium_Q sp003024715
CAZyme ID MGYG000002445_01378
CAZy Family GT0
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
291 MGYG000002445_2|CGC2 34542.97 9.1974
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000002445 3277016 Isolate South Korea Asia
Gene Location Start: 436167;  End: 437042  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000002445_01378.

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd00761 Glyco_tranf_GTA_type 3.82e-07 30 129 3 108
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities.
pfam00535 Glycos_transf_2 6.49e-06 27 155 1 135
Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids.
cd06433 GT_2_WfgS_like 6.88e-04 33 249 7 201
WfgS and WfeV are involved in O-antigen biosynthesis. Escherichia coli WfgS and Shigella dysenteriae WfeV are glycosyltransferase 2 family enzymes involved in O-antigen biosynthesis. GT-2 enzymes have GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QRV18695.1 1.53e-118 26 290 4 260
ADL03130.1 1.53e-118 26 290 4 260
SEU06483.1 2.52e-117 26 290 4 260
QIX92526.1 5.35e-100 26 290 5 261
ANU46562.1 1.52e-99 26 290 5 261

PDB Hits      help

has no PDB hit.

Swiss-Prot Hits      help

has no Swissprot hit.

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000050 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000002445_01378.