Species | UBA9502 sp003481825 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Firmicutes_A; Clostridia; Lachnospirales; Lachnospiraceae; UBA9502; UBA9502 sp003481825 | |||||||||||
CAZyme ID | MGYG000002280_00368 | |||||||||||
CAZy Family | GH31 | |||||||||||
CAZyme Description | hypothetical protein | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 49116; End: 50096 Strand: + |
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GH31 | 134 | 291 | 9.6e-46 | 0.36533957845433257 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
cd06591 | GH31_xylosidase_XylS | 9.86e-74 | 154 | 289 | 1 | 135 | xylosidase XylS-like. XylS is a glycosyl hydrolase family 31 (GH31) alpha-xylosidase found in prokaryotes, eukaryotes, and archaea, that catalyzes the release of alpha-xylose from the non-reducing terminal side of the alpha-xyloside substrate. XylS has been characterized in Sulfolobus solfataricus where it hydrolyzes isoprimeverose, the p-nitrophenyl-beta derivative of isoprimeverose, and xyloglucan oligosaccharides, and has transxylosidic activity. All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. The XylS family corresponds to subgroup 3 in the Ernst et al classification of GH31 enzymes. |
COG1501 | YicI | 8.15e-61 | 8 | 291 | 104 | 396 | Alpha-glucosidase, glycosyl hydrolase family GH31 [Carbohydrate transport and metabolism]. |
pfam01055 | Glyco_hydro_31 | 3.76e-43 | 136 | 293 | 2 | 162 | Glycosyl hydrolases family 31. Glycosyl hydrolases are key enzymes of carbohydrate metabolism. Family 31 comprises of enzymes that are, or similar to, alpha- galactosidases. |
cd06593 | GH31_xylosidase_YicI | 2.48e-24 | 154 | 287 | 1 | 138 | alpha-xylosidase YicI-like. YicI alpha-xylosidase is a glycosyl hydrolase family 31 (GH31) enzyme that catalyzes the release of an alpha-xylosyl residue from the non-reducing end of alpha-xyloside substrates such as alpha-xylosyl fluoride and isoprimeverose. YicI forms a homohexamer (a trimer of dimers). All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. The YicI family corresponds to subgroup 4 in the Ernst et al classification of GH31 enzymes. |
cd14752 | GH31_N | 1.79e-19 | 50 | 154 | 8 | 122 | N-terminal domain of glycosyl hydrolase family 31 (GH31). This family is found N-terminal to the glycosyl-hydrolase domain of Glycoside hydrolase family 31 (GH31). GH31 includes the glycoside hydrolases alpha-glucosidase (EC 3.2.1.20), alpha-1,3-glucosidase (EC 3.2.1.84), alpha-xylosidase (EC 3.2.1.177), sucrase-isomaltase (EC 3.2.1.48 and EC 3.2.1.10), as well as alpha-glucan lyase (EC 4.2.2.13). All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. In most cases, the pyranose moiety recognized in subsite-1 of the substrate binding site is an alpha-D-glucose, though some GH31 family members show a preference for alpha-D-xylose. Several GH31 enzymes can accommodate both glucose and xylose and different levels of discrimination between the two have been observed. Most characterized GH31 enzymes are alpha-glucosidases. In mammals, GH31 members with alpha-glucosidase activity are implicated in at least three distinct biological processes. The lysosomal acid alpha-glucosidase (GAA) is essential for glycogen degradation and a deficiency or malfunction of this enzyme causes glycogen storage disease II, also known as Pompe disease. In the endoplasmic reticulum, alpha-glucosidase II catalyzes the second step in the N-linked oligosaccharide processing pathway that constitutes part of the quality control system for glycoprotein folding and maturation. The intestinal enzymes sucrase-isomaltase (SI) and maltase-glucoamylase (MGAM) play key roles in the final stage of carbohydrate digestion, making alpha-glucosidase inhibitors useful in the treatment of type 2 diabetes. GH31 alpha-glycosidases are retaining enzymes that cleave their substrates via an acid/base-catalyzed, double-displacement mechanism involving a covalent glycosyl-enzyme intermediate. Two aspartic acid residues of the catalytic domain have been identified as the catalytic nucleophile and the acid/base, respectively. A loop of the N-terminal beta-sandwich domain is part of the active site pocket. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
QBE97771.1 | 6.04e-177 | 4 | 289 | 77 | 362 |
KAF2088707.1 | 1.35e-172 | 4 | 289 | 78 | 363 |
KAF2183545.1 | 4.80e-172 | 4 | 289 | 77 | 362 |
QYS92684.1 | 1.08e-169 | 4 | 290 | 77 | 364 |
QPC70056.1 | 3.32e-167 | 3 | 289 | 76 | 363 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
6DRU_A | 1.76e-45 | 47 | 289 | 132 | 377 | Xylosidasefrom Aspergillus niger [Aspergillus niger],6DRU_B Xylosidase from Aspergillus niger [Aspergillus niger] |
5JOU_A | 1.75e-29 | 129 | 289 | 372 | 536 | Bacteroidesovatus Xyloglucan PUL GH31 [Bacteroides ovatus],5JOV_A Bacteroides ovatus Xyloglucan PUL GH31 with bound 5FIdoF [Bacteroides ovatus] |
7KMP_A | 2.39e-29 | 40 | 272 | 161 | 547 | ChainA, Alpha-xylosidase [Xanthomonas citri pv. citri str. 306],7KNC_A Chain A, Alpha-xylosidase [Xanthomonas citri pv. citri str. 306] |
2XVG_A | 2.42e-29 | 122 | 289 | 393 | 564 | crystalstructure of alpha-xylosidase (GH31) from Cellvibrio japonicus [Cellvibrio japonicus],2XVK_A crystal structure of alpha-xylosidase (GH31) from Cellvibrio japonicus in complex with 5-fluoro-alpha-D-xylopyranosyl fluoride [Cellvibrio japonicus],2XVL_A crystal structure of alpha-xylosidase (GH31) from Cellvibrio japonicus in complex with Pentaerythritol propoxylate (5 4 PO OH) [Cellvibrio japonicus] |
6JR8_A | 2.81e-17 | 62 | 296 | 155 | 403 | Flavobacteriumjohnsoniae GH31 dextranase, FjDex31A, mutant D412A complexed with isomaltotriose [Flavobacterium johnsoniae UW101],6JR8_B Flavobacterium johnsoniae GH31 dextranase, FjDex31A, mutant D412A complexed with isomaltotriose [Flavobacterium johnsoniae UW101],6JR8_C Flavobacterium johnsoniae GH31 dextranase, FjDex31A, mutant D412A complexed with isomaltotriose [Flavobacterium johnsoniae UW101],6JR8_D Flavobacterium johnsoniae GH31 dextranase, FjDex31A, mutant D412A complexed with isomaltotriose [Flavobacterium johnsoniae UW101] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
Q01336 | 1.99e-111 | 4 | 289 | 79 | 371 | Uncharacterized family 31 glucosidase ORF2 (Fragment) OS=Pseudescherichia vulneris OX=566 PE=3 SV=1 |
A2QTU5 | 1.09e-44 | 47 | 289 | 150 | 395 | Alpha-xylosidase A OS=Aspergillus niger (strain CBS 513.88 / FGSC A1513) OX=425011 GN=axlA PE=1 SV=1 |
Q9P999 | 5.15e-44 | 50 | 258 | 100 | 318 | Alpha-xylosidase OS=Saccharolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2) OX=273057 GN=xylS PE=1 SV=1 |
A7LXT0 | 9.57e-29 | 129 | 289 | 371 | 535 | Alpha-xylosidase BoGH31A OS=Bacteroides ovatus (strain ATCC 8483 / DSM 1896 / JCM 5824 / BCRC 10623 / CCUG 4943 / NCTC 11153) OX=411476 GN=BACOVA_02646 PE=1 SV=1 |
P96793 | 4.23e-18 | 58 | 284 | 153 | 392 | Alpha-xylosidase XylQ OS=Lactiplantibacillus pentosus OX=1589 GN=xylQ PE=1 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000050 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.