Species | Corynebacterium ammoniagenes | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Actinobacteriota; Actinomycetia; Mycobacteriales; Mycobacteriaceae; Corynebacterium; Corynebacterium ammoniagenes | |||||||||||
CAZyme ID | MGYG000001533_01725 | |||||||||||
CAZy Family | GH32 | |||||||||||
CAZyme Description | Levanase | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 1857573; End: 1858988 Strand: + |
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GH32 | 12 | 341 | 3.5e-44 | 0.9965870307167235 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
COG1621 | SacC | 8.49e-61 | 7 | 458 | 28 | 472 | Sucrose-6-phosphate hydrolase SacC, GH32 family [Carbohydrate transport and metabolism]. |
smart00640 | Glyco_32 | 1.30e-36 | 12 | 435 | 1 | 437 | Glycosyl hydrolases family 32. |
pfam00251 | Glyco_hydro_32N | 5.71e-22 | 12 | 341 | 1 | 308 | Glycosyl hydrolases family 32 N-terminal domain. This domain corresponds to the N-terminal domain of glycosyl hydrolase family 32 which forms a five bladed beta propeller structure. |
cd08996 | GH32_FFase | 9.91e-21 | 23 | 332 | 6 | 281 | Glycosyl hydrolase family 32, beta-fructosidases. Glycosyl hydrolase family GH32 cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. |
cd18623 | GH32_ScrB-like | 1.35e-17 | 23 | 334 | 6 | 289 | glycoside hydrolase family 32 sucrose 6 phosphate hydrolase (sucrase). Glycosyl hydrolase family GH32 subgroup contains sucrose-6-phosphate hydrolase (sucrase, EC:3.2.1.26) among others. The enzyme cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose. These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
AQS74824.1 | 0.0 | 4 | 471 | 1 | 468 |
APT82958.1 | 0.0 | 4 | 471 | 1 | 468 |
AQX72462.1 | 8.64e-296 | 4 | 470 | 1 | 465 |
ASJ20009.1 | 8.64e-296 | 4 | 470 | 1 | 465 |
AMJ45866.1 | 8.64e-296 | 4 | 470 | 1 | 465 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
7BWC_A | 3.23e-12 | 7 | 447 | 48 | 463 | Bombyxmori GH32 beta-fructofuranosidase BmSUC1 mutant D63A in complex with sucrose [Bombyx mori] |
7VCO_A | 3.24e-12 | 7 | 444 | 25 | 458 | ChainA, Sucrose-6-phosphate hydrolase [Frischella perrara],7VCP_A Chain A, Sucrose-6-phosphate hydrolase [Frischella perrara] |
3U14_A | 1.45e-11 | 7 | 272 | 35 | 292 | ChainA, Fructofuranosidase [Schwanniomyces occidentalis],3U14_B Chain B, Fructofuranosidase [Schwanniomyces occidentalis],6S1T_A Chain A, Fructofuranosidase [Schwanniomyces occidentalis],6S1T_B Chain B, Fructofuranosidase [Schwanniomyces occidentalis],6S2B_A Chain A, Fructofuranosidase [Schwanniomyces occidentalis],6S2B_B Chain B, Fructofuranosidase [Schwanniomyces occidentalis] |
7BWB_A | 1.76e-11 | 7 | 447 | 48 | 463 | Bombyxmori GH32 beta-fructofuranosidase BmSUC1 [Bombyx mori] |
3U75_A | 1.38e-10 | 7 | 272 | 35 | 292 | ChainA, Fructofuranosidase [Schwanniomyces occidentalis],3U75_B Chain B, Fructofuranosidase [Schwanniomyces occidentalis],3U75_C Chain C, Fructofuranosidase [Schwanniomyces occidentalis],3U75_D Chain D, Fructofuranosidase [Schwanniomyces occidentalis] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
P07819 | 5.83e-18 | 7 | 462 | 28 | 471 | Sucrose-6-phosphate hydrolase OS=Bacillus subtilis (strain 168) OX=224308 GN=sacA PE=3 SV=2 |
P40714 | 1.04e-14 | 9 | 444 | 26 | 449 | Sucrose-6-phosphate hydrolase OS=Escherichia coli OX=562 GN=cscA PE=3 SV=1 |
P16553 | 3.13e-12 | 9 | 444 | 25 | 448 | Raffinose invertase OS=Escherichia coli OX=562 GN=rafD PE=3 SV=1 |
Q05936 | 3.27e-12 | 7 | 456 | 33 | 475 | Sucrose-6-phosphate hydrolase OS=Staphylococcus xylosus OX=1288 GN=scrB PE=3 SV=1 |
P13394 | 1.75e-11 | 9 | 446 | 38 | 455 | Sucrose-6-phosphate hydrolase OS=Vibrio alginolyticus OX=663 GN=scrB PE=2 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000057 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.