logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001522_01819

You are here: Home > Sequence: MGYG000001522_01819

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Pauljensenia radingae_A
Lineage Bacteria; Actinobacteriota; Actinomycetia; Actinomycetales; Actinomycetaceae; Pauljensenia; Pauljensenia radingae_A
CAZyme ID MGYG000001522_01819
CAZy Family GH4
CAZyme Description 6-phospho-alpha-glucosidase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
464 MGYG000001522_5|CGC13 50774.22 4.6048
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001522 2458350 Isolate not provided not provided
Gene Location Start: 977353;  End: 978747  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001522_01819.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH4 2 180 1.4e-55 0.9776536312849162

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd05296 GH4_P_beta_glucosidase 3.65e-173 1 454 1 413
Glycoside Hydrolases Family 4; Phospho-beta-glucosidase. Some bacteria simultaneously translocate and phosphorylate disaccharides via the phosphoenolpyruvate-dependent phosphotransferase system (PEP-PTS). After translocation, these phospho-disaccharides may be hydrolyzed by the GH4 glycoside hydrolases such as the phospho-beta-glucosidases. Other organisms (such as archaea and Thermotoga maritima ) lack the PEP-PTS system, but have several enzymes normally associated with the PEP-PTS operon. The 6-phospho-beta-glucosidase from Thermotoga maritima hydrolylzes cellobiose 6-phosphate (6P) into glucose-6P and glucose, in an NAD+ and Mn2+ dependent fashion. The Escherichia coli 6-phospho-beta-glucosidase (also called celF) hydrolyzes a variety of phospho-beta-glucosides including cellobiose-6P, salicin-6P, arbutin-6P, and gentobiose-6P. Phospho-beta-glucosidases are part of the NAD(P)-binding Rossmann fold superfamily, which includes a wide variety of protein families including the NAD(P)-binding domains of alcohol dehydrogenases, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate dehydrogenases, formate/glycerate dehydrogenases, siroheme synthases, 6-phosphogluconate dehydrogenases, aminoacid dehydrogenases, repressor rex, and NAD-binding potassium channel domains, among others.
COG1486 CelF 4.79e-100 1 453 4 429
Alpha-galactosidase/6-phospho-beta-glucosidase, family 4 of glycosyl hydrolase [Carbohydrate transport and metabolism].
cd05298 GH4_GlvA_pagL_like 1.15e-75 1 454 1 427
Glycoside Hydrolases Family 4; GlvA- and pagL-like glycosidases. Bacillus subtilis GlvA and Clostridium acetobutylicum pagL are 6-phospho-alpha-glucosidase, catalyzing the hydrolysis of alpha-glucopyranoside bonds to release glucose from oligosaccharides. The substrate specificities of other members of this subgroup are unknown. Some bacteria simultaneously translocate and phosphorylate disaccharides via the phosphoenolpyruvate-dependent phosphotransferase system (PEP_PTS). After translocation, these phospho-disaccharides may be hydrolyzed by the GH4 glycoside hydrolases, which include 6-phospho-beta-glucosidases, 6-phospho-alpha-glucosidases, alpha-glucosidases/alpha-glucuronidases (only from Thermotoga), and alpha-galactosidases. Members of this subfamily are part of the NAD(P)-binding Rossmann fold superfamily, which includes a wide variety of protein families including the NAD(P)-binding domains of alcohol dehydrogenases, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate dehydrogenases, formate/glycerate dehydrogenases, siroheme synthases, 6-phosphogluconate dehydrogenases, aminoacid dehydrogenases, repressor rex, and NAD-binding potassium channel domains, among others.
cd05197 GH4_glycoside_hydrolases 6.00e-74 1 450 1 420
Glycoside Hydrases Family 4. Glycoside hydrolases cleave glycosidic bonds to release smaller sugars from oligo- or polysaccharides. Some bacteria simultaneously translocate and phosphorylate disaccharides via the phosphoenolpyruvate-dependent phosphotransferase system (PEP-PTS). After translocation, these phospho-disaccharides may be hydrolyzed by GH4 glycoside hydrolases. Other organisms (such as archaea and Thermotoga maritima) lack the PEP-PTS system, but have several enzymes normally associated with the PEP-PTS operon. GH4 family members include 6-phospho-beta-glucosidases, 6-phospho-alpha-glucosidases, alpha-glucosidases/alpha-glucuronidases (only from Thermotoga), and alpha-galactosidases. They require two cofactors, NAD+ and a divalent metal (Mn2+, Ni2+, Mg2+), for activity. Some also require reducing conditions. GH4 glycoside hydrolases are part of the NAD(P)-binding Rossmann fold superfamily, which includes a wide variety of protein families including the NAD(P)-binding domains of alcohol dehydrogenases, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate dehydrogenases, formate/glycerate dehydrogenases, siroheme synthases, 6-phosphogluconate dehydrogenases, aminoacid dehydrogenases, repressor rex, and NAD-binding potassium channel domains, among others.
cd05297 GH4_alpha_glucosidase_galactosidase 1.75e-56 37 442 31 409
Glycoside Hydrolases Family 4; Alpha-glucosidases and alpha-galactosidases. linked to 3D####ucture

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
SDU08777.1 0.0 1 464 1 464
QPL05554.1 6.69e-232 1 463 1 468
AMD87761.1 4.72e-228 1 463 1 468
BDA64153.1 3.72e-223 1 462 1 473
CED91657.1 1.66e-222 1 463 1 467

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
5C3M_A 7.61e-49 1 461 5 439
Crystalstructure of Gan4C, a GH4 6-phospho-glucosidase from Geobacillus stearothermophilus [Geobacillus stearothermophilus],5C3M_B Crystal structure of Gan4C, a GH4 6-phospho-glucosidase from Geobacillus stearothermophilus [Geobacillus stearothermophilus],5C3M_C Crystal structure of Gan4C, a GH4 6-phospho-glucosidase from Geobacillus stearothermophilus [Geobacillus stearothermophilus],5C3M_D Crystal structure of Gan4C, a GH4 6-phospho-glucosidase from Geobacillus stearothermophilus [Geobacillus stearothermophilus]
1S6Y_A 2.19e-45 1 454 8 431
2.3Acrystal structure of phospho-beta-glucosidase [Geobacillus stearothermophilus]
6DUX_A 9.65e-43 2 453 8 432
ChainA, 6-phospho-alpha-glucosidase [Klebsiella pneumoniae],6DUX_B Chain B, 6-phospho-alpha-glucosidase [Klebsiella pneumoniae],6DVV_A Chain A, 6-phospho-alpha-glucosidase [Klebsiella pneumoniae],6DVV_B Chain B, 6-phospho-alpha-glucosidase [Klebsiella pneumoniae]
1U8X_X 7.90e-41 2 454 30 455
CrystalStructure Of Glva From Bacillus Subtilis, A Metal-requiring, Nad-dependent 6-phospho-alpha-glucosidase [Bacillus subtilis]
1UP7_A 2.63e-37 1 462 3 416
Structureof the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8],1UP7_B Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8],1UP7_C Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8],1UP7_D Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8],1UP7_E Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8],1UP7_F Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8],1UP7_G Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8],1UP7_H Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q9AGA6 2.64e-46 2 453 5 429
6-phospho-alpha-glucosidase OS=Klebsiella pneumoniae OX=573 GN=aglB PE=1 SV=1
P54716 8.42e-44 2 454 7 432
Maltose-6'-phosphate glucosidase OS=Bacillus subtilis (strain 168) OX=224308 GN=glvA PE=1 SV=1
P46320 1.42e-43 1 454 5 427
Probable 6-phospho-beta-glucosidase OS=Bacillus subtilis (strain 168) OX=224308 GN=licH PE=2 SV=1
Q03C44 2.73e-43 2 450 7 428
6-phospho-alpha-glucosidase 1 OS=Lacticaseibacillus paracasei (strain ATCC 334 / BCRC 17002 / CCUG 31169 / CIP 107868 / KCTC 3260 / NRRL B-441) OX=321967 GN=simA PE=1 SV=1
Q97LM4 7.16e-43 2 454 5 431
Maltose-6'-phosphate glucosidase MalH OS=Clostridium acetobutylicum (strain ATCC 824 / DSM 792 / JCM 1419 / LMG 5710 / VKM B-1787) OX=272562 GN=malH PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000057 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001522_01819.