logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001504_01505

You are here: Home > Sequence: MGYG000001504_01505

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Mt11 sp001282665
Lineage Bacteria; Firmicutes_A; Clostridia; Tissierellales; Tepidimicrobiaceae; Mt11; Mt11 sp001282665
CAZyme ID MGYG000001504_01505
CAZy Family CE4
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
235 27178.38 5.335
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001504 3566389 Isolate not provided not provided
Gene Location Start: 584993;  End: 585700  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001504_01505.

CAZyme Signature Domains help

Family Start End Evalue family coverage
CE4 57 169 1.3e-27 0.8615384615384616

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd10950 CE4_BsYlxY_like 4.14e-96 46 234 1 188
Putative catalytic NodB homology domain of uncharacterized protein YlxY from Bacillus subtilis and its bacterial homologs. The Bacillus subtilis genome contains six polysaccharide deacetylase gene homologs: pdaA, pdaB (previously known as ybaN), yheN, yjeA, yxkH and ylxY. This family is represented by Bacillus subtilis putative polysaccharide deacetylase BsYlxY, encoded by the ylxY gene, which is a member of the carbohydrate esterase 4 (CE4) superfamily. Although its biological function still remains unknown, BsYlxY shows high sequence homology to the catalytic domain of Bacillus subtilis pdaB gene encoding a putative polysaccharide deacetylase (BsPdaB), which is essential for the maintenance of spores after the late stage of sporulation and is highly conserved in spore-forming bacteria. However, disruption of the ylxY gene in B. subtilis did not cause any sporulation defect. Moreover, the Asp residue in the classical His-His-Asp zinc-binding motif of CE4 esterases is mutated to a Val residue in this family. Other catalytically relevant residues of CE4 esterases are also not conserved, which suggest that members of this family may be inactive.
TIGR02764 spore_ybaN_pdaB 3.33e-67 46 234 1 191
polysaccharide deacetylase family sporulation protein PdaB. This model describes the YbaN protein family, also called PdaB and SpoVIE, of Gram-positive bacteria. Although ybaN null mutants have only a mild sporulation defect, ybaN/ytrI double mutants show drastically reducted sporulation efficiencies. This synthetic defect suggests the role of this sigmaE-controlled gene in sporulation had been masked by functional redundancy. Members of this family are homologous to a characterized polysaccharide deacetylase; the exact function this protein family is unknown. [Cellular processes, Sporulation and germination]
TIGR02873 spore_ylxY 1.46e-66 44 234 78 267
probable sporulation protein, polysaccharide deacetylase family. Members of this protein family are most closely related to TIGR02764, a subset of polysaccharide deacetylase family proteins found in a species if and only if the species forms endospores like those of Bacillus subtilis or Clostridium tetani. This family is likewise restricted to spore-formers, but is not universal among them in having sequences with full-length matches to the model. [Energy metabolism, Biosynthesis and degradation of polysaccharides, Cellular processes, Sporulation and germination]
cd10917 CE4_NodB_like_6s_7s 9.98e-60 61 221 11 171
Catalytic NodB homology domain of rhizobial NodB-like proteins. This family belongs to the large and functionally diverse carbohydrate esterase 4 (CE4) superfamily, whose members show strong sequence similarity with some variability due to their distinct carbohydrate substrates. It includes many rhizobial NodB chitooligosaccharide N-deacetylase (EC 3.5.1.-)-like proteins, mainly from bacteria and eukaryotes, such as chitin deacetylases (EC 3.5.1.41), bacterial peptidoglycan N-acetylglucosamine deacetylases (EC 3.5.1.-), and acetylxylan esterases (EC 3.1.1.72), which catalyze the N- or O-deacetylation of substrates such as acetylated chitin, peptidoglycan, and acetylated xylan. All members of this family contain a catalytic NodB homology domain with the same overall topology and a deformed (beta/alpha)8 barrel fold with 6- or 7 strands. Their catalytic activity is dependent on the presence of a divalent cation, preferably cobalt or zinc, and they employ a conserved His-His-Asp zinc-binding triad closely associated with the conserved catalytic base (aspartic acid) and acid (histidine) to carry out acid/base catalysis. Several family members show diversity both in metal ion specificities and in the residues that coordinate the metal.
cd10949 CE4_BsPdaB_like 1.53e-56 49 234 2 190
Putative catalytic NodB homology domain of Bacillus subtilis putative polysaccharide deacetylase PdaB, and its bacterial homologs. The Bacillus subtilis genome contains six polysaccharide deacetylase gene homologs: pdaA, pdaB (previously known as ybaN), yheN, yjeA, yxkH and ylxY. This family is represented by the putative polysaccharide deacetylase PdaB encoded by the pdaB gene on sporulation of Bacillus subtilis. Although its biochemical properties remain to be determined, the PdaB (YbaN) protein is essential for maintaining spores after the late stage of sporulation and is highly conserved in spore-forming bacteria. The glycans of the spore cortex may be candidate PdaB substrates. Based on sequence similarity, the family members are classified as carbohydrate esterase 4 (CE4) superfamily members. However, the classical His-His-Asp zinc-binding motif of CE4 esterases is missing in this family.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
SHD77066.1 3.09e-126 1 235 1 236
QQY80690.1 8.19e-117 1 235 1 235
QIB26142.1 3.59e-100 32 235 34 238
QAT61659.1 1.27e-94 1 235 1 234
AFS78558.1 2.93e-94 28 235 30 238

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
7BKF_A 1.83e-46 44 234 79 268
ChainA, Putative polysaccharide deacetylase [Bacillus anthracis]
6HPA_A 8.04e-46 44 234 79 268
Crystalstructure of a BA3943 mutant,a CE4 family pseudoenzyme [Bacillus anthracis]
6HM9_A 5.68e-44 44 234 78 267
Crystalstructure of a BA3943 mutant,a CE4 family pseudoenzyme with restored enzymatic activity. [Bacillus anthracis]
7FBW_A 6.61e-38 65 235 131 301
ChainA, Predicted xylanase/chitin deacetylase [Caldanaerobacter subterraneus subsp. tengcongensis MB4]
4M1B_A 5.17e-35 42 234 48 243
StructuralDetermination of BA0150, a Polysaccharide Deacetylase from Bacillus anthracis [Bacillus anthracis],4M1B_B Structural Determination of BA0150, a Polysaccharide Deacetylase from Bacillus anthracis [Bacillus anthracis]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P50850 2.18e-50 36 234 115 312
Uncharacterized protein YlxY OS=Bacillus subtilis (strain 168) OX=224308 GN=ylxY PE=3 SV=2
P50865 2.83e-34 44 234 50 243
Probable polysaccharide deacetylase PdaB OS=Bacillus subtilis (strain 168) OX=224308 GN=pdaB PE=3 SV=2
Q04729 5.96e-27 43 234 59 254
Uncharacterized 30.6 kDa protein in fumA 3'region OS=Geobacillus stearothermophilus OX=1422 PE=3 SV=1
Q8DP63 4.92e-26 50 234 267 448
Peptidoglycan-N-acetylglucosamine deacetylase OS=Streptococcus pneumoniae (strain ATCC BAA-255 / R6) OX=171101 GN=pgdA PE=1 SV=1
O34928 6.01e-26 41 234 56 253
Peptidoglycan-N-acetylmuramic acid deacetylase PdaA OS=Bacillus subtilis (strain 168) OX=224308 GN=pdaA PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
0.949773 0.048182 0.000598 0.000187 0.000142 0.001141

TMHMM  Annotations      download full data without filtering help

start end
10 32