Species | Odoribacter laneus | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Marinifilaceae; Odoribacter; Odoribacter laneus | |||||||||||
CAZyme ID | MGYG000001399_00355 | |||||||||||
CAZy Family | GT2 | |||||||||||
CAZyme Description | hypothetical protein | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 429835; End: 430944 Strand: - |
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GT2 | 41 | 136 | 8.2e-19 | 0.5411764705882353 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
cd00761 | Glyco_tranf_GTA_type | 5.43e-16 | 42 | 135 | 1 | 90 | Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities. |
pfam00535 | Glycos_transf_2 | 2.61e-14 | 41 | 133 | 1 | 89 | Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids. |
cd06423 | CESA_like | 5.48e-13 | 42 | 135 | 1 | 91 | CESA_like is the cellulose synthase superfamily. The cellulose synthase (CESA) superfamily includes a wide variety of glycosyltransferase family 2 enzymes that share the common characteristic of catalyzing the elongation of polysaccharide chains. The members include cellulose synthase catalytic subunit, chitin synthase, glucan biosynthesis protein and other families of CESA-like proteins. Cellulose synthase catalyzes the polymerization reaction of cellulose, an aggregate of unbranched polymers of beta-1,4-linked glucose residues in plants, most algae, some bacteria and fungi, and even some animals. In bacteria, algae and lower eukaryotes, there is a second unrelated type of cellulose synthase (Type II), which produces acylated cellulose, a derivative of cellulose. Chitin synthase catalyzes the incorporation of GlcNAc from substrate UDP-GlcNAc into chitin, which is a linear homopolymer of beta-(1,4)-linked GlcNAc residues and Glucan Biosynthesis protein catalyzes the elongation of beta-1,2 polyglucose chains of Glucan. |
cd02525 | Succinoglycan_BP_ExoA | 6.59e-13 | 41 | 137 | 3 | 96 | ExoA is involved in the biosynthesis of succinoglycan. Succinoglycan Biosynthesis Protein ExoA catalyzes the formation of a beta-1,3 linkage of the second sugar (glucose) of the succinoglycan with the galactose on the lipid carrie. Succinoglycan is an acidic exopolysaccharide that is important for invasion of the nodules. Succinoglycan is a high-molecular-weight polymer composed of repeating octasaccharide units. These units are synthesized on membrane-bound isoprenoid lipid carriers, beginning with galactose followed by seven glucose molecules, and modified by the addition of acetate, succinate, and pyruvate. ExoA is a membrane protein with a transmembrance domain at c-terminus. |
COG0463 | WcaA | 5.48e-12 | 41 | 134 | 6 | 95 | Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
AHW60314.1 | 1.61e-92 | 1 | 363 | 1 | 362 |
QIA09021.1 | 6.61e-89 | 1 | 363 | 1 | 362 |
QRX64278.1 | 2.03e-86 | 2 | 363 | 3 | 369 |
VEJ04077.1 | 4.63e-79 | 2 | 363 | 3 | 369 |
QCW99720.1 | 3.46e-78 | 9 | 364 | 9 | 364 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
3BCV_A | 1.60e-06 | 36 | 132 | 3 | 94 | Crystalstructure of a putative glycosyltransferase from Bacteroides fragilis [Bacteroides fragilis NCTC 9343],3BCV_B Crystal structure of a putative glycosyltransferase from Bacteroides fragilis [Bacteroides fragilis NCTC 9343] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
Q4L977 | 2.50e-19 | 17 | 271 | 19 | 270 | 4,4'-diaponeurosporenoate glycosyltransferase OS=Staphylococcus haemolyticus (strain JCSC1435) OX=279808 GN=crtQ PE=3 SV=1 |
Q6GDN6 | 2.44e-17 | 8 | 286 | 10 | 285 | 4,4'-diaponeurosporenoate glycosyltransferase OS=Staphylococcus aureus (strain MRSA252) OX=282458 GN=crtQ PE=3 SV=1 |
Q7A3E0 | 3.30e-17 | 8 | 286 | 10 | 285 | 4,4'-diaponeurosporenoate glycosyltransferase OS=Staphylococcus aureus (strain N315) OX=158879 GN=crtQ PE=1 SV=1 |
Q6G6B1 | 3.30e-17 | 8 | 286 | 10 | 285 | 4,4'-diaponeurosporenoate glycosyltransferase OS=Staphylococcus aureus (strain MSSA476) OX=282459 GN=crtQ PE=3 SV=1 |
Q5HCY7 | 3.30e-17 | 8 | 286 | 10 | 285 | 4,4'-diaponeurosporenoate glycosyltransferase OS=Staphylococcus aureus (strain COL) OX=93062 GN=crtQ PE=3 SV=2 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000050 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.