logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001265_04125

You are here: Home > Sequence: MGYG000001265_04125

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Methylobacterium sp002778835
Lineage Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales; Beijerinckiaceae; Methylobacterium; Methylobacterium sp002778835
CAZyme ID MGYG000001265_04125
CAZy Family GT2
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
344 37179.68 9.6316
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001265 4213059 MAG Italy Europe
Gene Location Start: 777;  End: 1811  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001265_04125.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 17 154 4.8e-26 0.7764705882352941

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
pfam00535 Glycos_transf_2 4.58e-17 17 168 1 147
Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids.
cd00761 Glyco_tranf_GTA_type 4.27e-14 19 116 2 94
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities.
cd04184 GT2_RfbC_Mx_like 3.36e-11 16 115 3 99
Myxococcus xanthus RfbC like proteins are required for O-antigen biosynthesis. The rfbC gene encodes a predicted protein of 1,276 amino acids, which is required for O-antigen biosynthesis in Myxococcus xanthus. It is a subfamily of Glycosyltransferase Family GT2, which includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds.
COG0463 WcaA 2.38e-10 15 115 4 99
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd06913 beta3GnTL1_like 1.06e-09 19 118 2 103
Beta 1, 3-N-acetylglucosaminyltransferase is essential for the formation of poly-N-acetyllactosamine . This family includes human Beta3GnTL1 and related eukaryotic proteins. Human Beta3GnTL1 is a putative beta-1,3-N-acetylglucosaminyltransferase. Beta3GnTL1 is expressed at various levels in most of tissues examined. Beta 1, 3-N-acetylglucosaminyltransferase has been found to be essential for the formation of poly-N-acetyllactosamine. Poly-N-acetyllactosamine is a unique carbohydrate composed of N-acetyllactosamine repeats. It is often an important part of cell-type-specific oligosaccharide structures and some functional oligosaccharides. It has been shown that the structure and biosynthesis of poly-N-acetyllactosamine display a dramatic change during development and oncogenesis. Several members of beta-1, 3-N-acetylglucosaminyltransferase have been identified.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
APT33409.1 8.10e-238 1 344 1 344
AWV15524.1 5.47e-236 1 344 1 344
AIQ93044.1 5.23e-234 1 344 1 344
ACB26559.1 2.30e-205 1 344 1 344
AYO84286.1 7.64e-150 1 343 1 342

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
5HEA_A 1.09e-07 16 171 7 144
CgTstructure in hexamer [Streptococcus parasanguinis FW213],5HEA_B CgT structure in hexamer [Streptococcus parasanguinis FW213],5HEA_C CgT structure in hexamer [Streptococcus parasanguinis FW213],5HEC_A CgT structure in dimer [Streptococcus parasanguinis FW213],5HEC_B CgT structure in dimer [Streptococcus parasanguinis FW213]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P33697 4.05e-46 15 340 11 325
Succinoglycan biosynthesis protein ExoO OS=Rhizobium meliloti (strain 1021) OX=266834 GN=exoO PE=3 SV=2
P33700 7.29e-25 15 341 8 320
Succinoglycan biosynthesis protein ExoU OS=Rhizobium meliloti (strain 1021) OX=266834 GN=exoU PE=3 SV=1
P71059 5.66e-13 16 240 5 219
Uncharacterized glycosyltransferase EpsJ OS=Bacillus subtilis (strain 168) OX=224308 GN=epsJ PE=2 SV=1
O32268 4.17e-08 16 125 8 112
Putative teichuronic acid biosynthesis glycosyltransferase TuaG OS=Bacillus subtilis (strain 168) OX=224308 GN=tuaG PE=2 SV=1
A0A0H2UR96 4.43e-08 16 135 5 119
Glycosyltransferase GlyG OS=Streptococcus pneumoniae serotype 4 (strain ATCC BAA-334 / TIGR4) OX=170187 GN=glyG PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000042 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001265_04125.