logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001205_00420

You are here: Home > Sequence: MGYG000001205_00420

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species
Lineage Bacteria; Firmicutes_A; Clostridia; Oscillospirales; Ruminococcaceae; Gemmiger;
CAZyme ID MGYG000001205_00420
CAZy Family GT2
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
628 MGYG000001205_6|CGC1 69855.94 7.4229
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001205 2359919 MAG Austria Europe
Gene Location Start: 26167;  End: 28053  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001205_00420.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 99 212 2.6e-19 0.6588235294117647
GT2 356 579 1.8e-17 0.9217391304347826

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd04184 GT2_RfbC_Mx_like 1.87e-78 96 297 1 201
Myxococcus xanthus RfbC like proteins are required for O-antigen biosynthesis. The rfbC gene encodes a predicted protein of 1,276 amino acids, which is required for O-antigen biosynthesis in Myxococcus xanthus. It is a subfamily of Glycosyltransferase Family GT2, which includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds.
cd04186 GT_2_like_c 4.14e-42 358 576 1 166
Subfamily of Glycosyltransferase Family GT2 of unknown function. GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families.
COG1216 GT2 5.96e-27 354 606 3 250
Glycosyltransferase, GT2 family [Carbohydrate transport and metabolism].
cd06433 GT_2_WfgS_like 3.79e-22 99 303 1 200
WfgS and WfeV are involved in O-antigen biosynthesis. Escherichia coli WfgS and Shigella dysenteriae WfeV are glycosyltransferase 2 family enzymes involved in O-antigen biosynthesis. GT-2 enzymes have GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families.
cd00761 Glyco_tranf_GTA_type 3.52e-20 100 286 1 154
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QUO22278.1 2.48e-171 79 628 79 629
QUC66692.1 3.35e-168 68 628 391 946
CBL00720.1 2.39e-167 83 627 253 798
AXB29591.1 2.68e-166 83 627 253 798
QMW89744.1 1.22e-165 97 628 84 615

PDB Hits      help

has no PDB hit.

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P55465 3.59e-129 92 616 362 886
Uncharacterized protein y4gI OS=Sinorhizobium fredii (strain NBRC 101917 / NGR234) OX=394 GN=NGR_a03550 PE=4 SV=1
Q50864 2.28e-95 79 628 302 841
O-antigen biosynthesis protein RfbC OS=Myxococcus xanthus OX=34 GN=rfbC PE=4 SV=1
P71059 8.92e-09 96 327 3 233
Uncharacterized glycosyltransferase EpsJ OS=Bacillus subtilis (strain 168) OX=224308 GN=epsJ PE=2 SV=1
Q1RIM7 5.60e-08 96 446 13 379
Uncharacterized glycosyltransferase RBE_0706 OS=Rickettsia bellii (strain RML369-C) OX=336407 GN=RBE_0706 PE=3 SV=1
A0A0H2UR96 6.76e-08 98 211 5 116
Glycosyltransferase GlyG OS=Streptococcus pneumoniae serotype 4 (strain ATCC BAA-334 / TIGR4) OX=170187 GN=glyG PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
0.999768 0.000248 0.000001 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001205_00420.