logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001030_01543

You are here: Home > Sequence: MGYG000001030_01543

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species CAG-485 sp900760735
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Muribaculaceae; CAG-485; CAG-485 sp900760735
CAZyme ID MGYG000001030_01543
CAZy Family GT2
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
546 MGYG000001030_18|CGC1 62246.47 6.7455
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001030 3359263 MAG Sweden Europe
Gene Location Start: 17912;  End: 19552  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001030_01543.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 4 107 2.4e-27 0.6235294117647059
CE14 337 452 6.8e-18 0.9838709677419355

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd06433 GT_2_WfgS_like 5.84e-32 4 215 1 201
WfgS and WfeV are involved in O-antigen biosynthesis. Escherichia coli WfgS and Shigella dysenteriae WfeV are glycosyltransferase 2 family enzymes involved in O-antigen biosynthesis. GT-2 enzymes have GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families.
COG2120 LmbE 1.83e-27 332 516 10 197
N-acetylglucosaminyl deacetylase, LmbE family [Carbohydrate transport and metabolism].
cd00761 Glyco_tranf_GTA_type 6.94e-27 5 120 1 118
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities.
cd04196 GT_2_like_d 3.03e-26 4 216 1 211
Subfamily of Glycosyltransferase Family GT2 of unknown function. GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families.
pfam00535 Glycos_transf_2 1.88e-25 4 100 1 99
Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QFQ13414.1 2.05e-99 1 271 1 271
ATC65701.1 5.22e-24 336 542 40 256
AWK88475.1 3.48e-22 330 541 39 272
CCB68865.1 2.01e-21 4 233 9 252
BAY84899.1 2.74e-21 1 255 1 247

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1UAN_A 9.67e-14 334 465 3 126
Crystalstructure of the conserved protein TT1542 from Thermus thermophilus HB8 [Thermus thermophilus],1UAN_B Crystal structure of the conserved protein TT1542 from Thermus thermophilus HB8 [Thermus thermophilus]
5TZE_C 1.97e-09 1 107 1 111
Crystalstructure of S. aureus TarS in complex with UDP-GlcNAc [Staphylococcus aureus],5TZE_E Crystal structure of S. aureus TarS in complex with UDP-GlcNAc [Staphylococcus aureus],5TZI_C Crystal structure of S. aureus TarS 1-349 [Staphylococcus aureus],5TZJ_A Crystal structure of S. aureus TarS 1-349 in complex with UDP-GlcNAc [Staphylococcus aureus],5TZJ_C Crystal structure of S. aureus TarS 1-349 in complex with UDP-GlcNAc [Staphylococcus aureus],5TZK_C Crystal structure of S. aureus TarS 1-349 in complex with UDP [Staphylococcus aureus]
5TZ8_A 3.16e-09 1 107 1 111
Crystalstructure of S. aureus TarS [Staphylococcus aureus],5TZ8_B Crystal structure of S. aureus TarS [Staphylococcus aureus],5TZ8_C Crystal structure of S. aureus TarS [Staphylococcus aureus]
1H7L_A 1.22e-08 4 265 4 254
dTDP-MAGNESIUMCOMPLEX OF SPSA FROM BACILLUS SUBTILIS [Bacillus subtilis],1H7Q_A dTDP-MANGANESE COMPLEX OF SPSA FROM BACILLUS SUBTILIS [Bacillus subtilis],1QG8_A Native (Magnesium-Containing) Spsa From Bacillus Subtilis [Bacillus subtilis],1QGQ_A Udp-manganese Complex Of Spsa From Bacillus Subtilis [Bacillus subtilis],1QGS_A Udp-Magnesium Complex Of Spsa From Bacillus Subtilis [Bacillus subtilis]
5HEA_A 1.30e-08 4 104 8 109
CgTstructure in hexamer [Streptococcus parasanguinis FW213],5HEA_B CgT structure in hexamer [Streptococcus parasanguinis FW213],5HEA_C CgT structure in hexamer [Streptococcus parasanguinis FW213],5HEC_A CgT structure in dimer [Streptococcus parasanguinis FW213],5HEC_B CgT structure in dimer [Streptococcus parasanguinis FW213]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q68X33 1.76e-12 4 119 11 123
Uncharacterized glycosyltransferase RT0329 OS=Rickettsia typhi (strain ATCC VR-144 / Wilmington) OX=257363 GN=RT0329 PE=3 SV=1
Q4UM29 2.96e-11 4 104 17 117
Uncharacterized glycosyltransferase RF_0543 OS=Rickettsia felis (strain ATCC VR-1525 / URRWXCal2) OX=315456 GN=RF_0543 PE=3 SV=1
Q0P9C6 4.05e-11 4 117 5 119
GalNAc(5)-diNAcBac-PP-undecaprenol beta-1,3-glucosyltransferase OS=Campylobacter jejuni subsp. jejuni serotype O:2 (strain ATCC 700819 / NCTC 11168) OX=192222 GN=pglI PE=1 SV=1
Q92IF9 5.19e-11 4 99 17 112
Uncharacterized glycosyltransferase RC0461 OS=Rickettsia conorii (strain ATCC VR-613 / Malish 7) OX=272944 GN=RC0461 PE=3 SV=1
Q9ZDI9 5.88e-11 4 119 11 123
Uncharacterized glycosyltransferase RP339 OS=Rickettsia prowazekii (strain Madrid E) OX=272947 GN=RP339 PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000044 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001030_01543.