logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000000783_00115

You are here: Home > Sequence: MGYG000000783_00115

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Veillonella_A sp900545795
Lineage Bacteria; Firmicutes_C; Negativicutes; Veillonellales; Veillonellaceae; Veillonella_A; Veillonella_A sp900545795
CAZyme ID MGYG000000783_00115
CAZy Family GT0
CAZyme Description UDP-N-acetylglucosamine 2-epimerase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
381 MGYG000000783_1|CGC1 42573.45 4.7895
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000000783 2145785 MAG China Asia
Gene Location Start: 138388;  End: 139533  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000000783_00115.

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
COG0381 WecB 0.0 1 379 3 382
UDP-N-acetylglucosamine 2-epimerase [Cell wall/membrane/envelope biogenesis].
TIGR00236 wecB 0.0 2 369 1 365
UDP-N-acetylglucosamine 2-epimerase. This cytosolic enzyme converts UDP-N-acetyl-D-glucosamine to UDP-N-acetyl-D-mannosamine. In E. coli, this is the first step in the pathway of enterobacterial common antigen biosynthesis.Members of this orthology group have many gene symbols, often reflecting the overall activity of the pathway and/or operon that includes it. Symbols include epsC (exopolysaccharide C) in Burkholderia solanacerum, cap8P (type 8 capsule P) in Staphylococcus aureus, and nfrC in an older designation based on the effects of deletion on phage N4 adsorption. Epimerase activity was also demonstrated in a bifunctional rat enzyme, for which the N-terminal domain appears to be orthologous. The set of proteins found above the suggested cutoff includes E. coli WecB in one of two deeply branched clusters and the rat UDP-N-acetylglucosamine 2-epimerase domain in the other. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides]
cd03786 GTB_UDP-GlcNAc_2-Epimerase 1.85e-159 3 365 1 364
UDP-N-acetylglucosamine 2-epimerase and similar proteins. Bacterial members of the UDP-N-Acetylglucosamine (GlcNAc) 2-Epimerase family (EC 5.1.3.14) are known to catalyze the reversible interconversion of UDP-GlcNAc and UDP-N-acetylmannosamine (UDP-ManNAc). The enzyme serves to produce an activated form of ManNAc residues (UDP-ManNAc) for use in the biosynthesis of a variety of cell surface polysaccharides; The mammalian enzyme is bifunctional, catalyzing both the inversion of stereochemistry at C-2 and the hydrolysis of the UDP-sugar linkage to generate free ManNAc. It also catalyzes the phosphorylation of ManNAc to generate ManNAc 6-phosphate, a precursor to salic acids. In mammals, sialic acids are found at the termini of oligosaccharides in a large variety of cell surface glycoconjugates and are key mediators of cell-cell recognition events. Mutations in human members of this family have been associated with Sialuria, a rare disease caused by the disorders of sialic acid metabolism. This family belongs to the GT-B structural superfamily of glycoslytransferases, which have characteristic N- and C-terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility.
pfam02350 Epimerase_2 4.01e-149 22 366 1 336
UDP-N-acetylglucosamine 2-epimerase. This family consists of UDP-N-acetylglucosamine 2-epimerases EC:5.1.3.14 this enzyme catalyzes the production of UDP-ManNAc from UDP-GlcNAc. Note that some of the enzymes is this family are bifunctional, in these instances Pfam matches only the N-terminal half of the protein suggesting that the additional C-terminal part (when compared to mono-functional members of this family) is responsible for the UPD-N-acetylmannosamine kinase activity of these enzymes. This hypothesis is further supported by the assumption that the C-terminal part of rat Gne is the kinase domain.
cd01635 Glycosyltransferase_GTB-type 6.95e-05 67 302 34 216
glycosyltransferase family 1 and related proteins with GTB topology. Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. The structures of the formed glycoconjugates are extremely diverse, reflecting a wide range of biological functions. The members of this family share a common GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QGH21225.1 1.17e-153 3 365 5 366
ALP89282.1 1.17e-153 3 365 5 366
QJU45537.1 1.17e-153 3 365 5 366
AOR92965.1 1.17e-153 3 365 5 366
APF24762.1 1.17e-153 3 365 5 366

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
3BEO_A 2.17e-158 2 369 9 373
AStructural Basis for the allosteric regulation of non-hydrolyzing UDP-GlcNAc 2-epimerases [Bacillus anthracis],3BEO_B A Structural Basis for the allosteric regulation of non-hydrolyzing UDP-GlcNAc 2-epimerases [Bacillus anthracis]
4FKZ_A 2.79e-157 2 379 4 377
Crystalstructure of Bacillus subtilis UDP-GlcNAc 2-epimerase in complex with UDP-GlcNAc and UDP [Bacillus subtilis subsp. subtilis str. 168],4FKZ_B Crystal structure of Bacillus subtilis UDP-GlcNAc 2-epimerase in complex with UDP-GlcNAc and UDP [Bacillus subtilis subsp. subtilis str. 168]
1O6C_A 9.38e-151 2 379 4 377
Crystalstructure of UDP-N-acetylglucosamine 2-epimerase [Bacillus subtilis],1O6C_B Crystal structure of UDP-N-acetylglucosamine 2-epimerase [Bacillus subtilis]
5ENZ_A 1.06e-146 1 380 1 376
S.aureus MnaA-UDP co-structure [Staphylococcus aureus],5ENZ_B S. aureus MnaA-UDP co-structure [Staphylococcus aureus]
3OT5_A 5.22e-144 2 379 28 401
2.2Angstrom Resolution Crystal Structure of putative UDP-N-acetylglucosamine 2-epimerase from Listeria monocytogenes [Listeria monocytogenes EGD-e],3OT5_B 2.2 Angstrom Resolution Crystal Structure of putative UDP-N-acetylglucosamine 2-epimerase from Listeria monocytogenes [Listeria monocytogenes EGD-e],3OT5_C 2.2 Angstrom Resolution Crystal Structure of putative UDP-N-acetylglucosamine 2-epimerase from Listeria monocytogenes [Listeria monocytogenes EGD-e],3OT5_D 2.2 Angstrom Resolution Crystal Structure of putative UDP-N-acetylglucosamine 2-epimerase from Listeria monocytogenes [Listeria monocytogenes EGD-e]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q9X0C4 3.78e-157 1 369 1 368
Putative UDP-N-acetylglucosamine 2-epimerase OS=Thermotoga maritima (strain ATCC 43589 / DSM 3109 / JCM 10099 / NBRC 100826 / MSB8) OX=243274 GN=TM_1034 PE=3 SV=1
P39131 1.16e-156 2 379 4 377
UDP-N-acetylglucosamine 2-epimerase OS=Bacillus subtilis (strain 168) OX=224308 GN=mnaA PE=1 SV=1
P45360 3.26e-150 2 379 4 381
Putative UDP-N-acetylglucosamine 2-epimerase OS=Clostridium acetobutylicum (strain ATCC 824 / DSM 792 / JCM 1419 / LMG 5710 / VKM B-1787) OX=272562 GN=CA_C2874 PE=3 SV=2
P27828 3.23e-143 2 366 1 370
UDP-N-acetylglucosamine 2-epimerase OS=Escherichia coli (strain K12) OX=83333 GN=wecB PE=1 SV=2
Q8XAR8 1.85e-142 2 366 1 370
UDP-N-acetylglucosamine 2-epimerase OS=Escherichia coli O157:H7 OX=83334 GN=wecB PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000072 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000000783_00115.