logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000000493_00437

You are here: Home > Sequence: MGYG000000493_00437

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species UBA2883 sp002103075
Lineage Bacteria; Cyanobacteria; Vampirovibrionia; Gastranaerophilales; Gastranaerophilaceae; UBA2883; UBA2883 sp002103075
CAZyme ID MGYG000000493_00437
CAZy Family GH13
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
676 78271.32 9.1132
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000000493 1815977 MAG Fiji Oceania
Gene Location Start: 163927;  End: 165957  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000000493_00437.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 120 509 5.9e-120 0.9886685552407932

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd11334 AmyAc_TreS 9.62e-110 95 513 1 380
Alpha amylase catalytic domain found in Trehalose synthetase. Trehalose synthetase (TreS) catalyzes the reversible interconversion of trehalose and maltose. The enzyme catalyzes the reaction in both directions, but the preferred substrate is maltose. Glucose is formed as a by-product of this reaction. It is believed that the catalytic mechanism may involve the cutting of the incoming disaccharide and transfer of a glucose to an enzyme-bound glucose. This enzyme also catalyzes production of a glucosamine disaccharide from maltose and glucosamine. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd11324 AmyAc_Amylosucrase 3.51e-87 48 580 15 536
Alpha amylase catalytic domain found in Amylosucrase. Amylosucrase is a glucosyltransferase that catalyzes the transfer of a D-glucopyranosyl moiety from sucrose onto an acceptor molecule. When the acceptor is another saccharide, only alpha-1,4 linkages are produced. Unlike most amylopolysaccharide synthases, it does not require any alpha-D-glucosyl nucleoside diphosphate substrate. In the presence of glycogen it catalyzes the transfer of a D-glucose moiety onto a glycogen branch, but in its absence, it hydrolyzes sucrose and synthesizes polymers, smaller maltosaccharides, and sucrose isoforms. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
COG0366 AmyA 1.45e-51 100 632 2 500
Glycosidase [Carbohydrate transport and metabolism].
cd11343 AmyAc_Sucrose_phosphorylase-like 1.71e-43 105 578 9 437
Alpha amylase catalytic domain found in sucrose phosphorylase (also called sucrose glucosyltransferase, disaccharide glucosyltransferase, and sucrose-phosphate alpha-D glucosyltransferase). Sucrose phosphorylase is a bacterial enzyme that catalyzes the phosphorolysis of sucrose to yield glucose-1-phosphate and fructose. These enzymes do not have the conserved calcium ion present in other alpha amylase family enzymes. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd11333 AmyAc_SI_OligoGlu_DGase 4.69e-42 97 515 1 373
Alpha amylase catalytic domain found in Sucrose isomerases, oligo-1,6-glucosidase (also called isomaltase; sucrase-isomaltase; alpha-limit dextrinase), dextran glucosidase (also called glucan 1,6-alpha-glucosidase), and related proteins. The sucrose isomerases (SIs) Isomaltulose synthase (EC 5.4.99.11) and Trehalose synthase (EC 5.4.99.16) catalyze the isomerization of sucrose and maltose to produce isomaltulose and trehalulose, respectively. Oligo-1,6-glucosidase (EC 3.2.1.10) hydrolyzes the alpha-1,6-glucosidic linkage of isomaltooligosaccharides, pannose, and dextran. Unlike alpha-1,4-glucosidases (EC 3.2.1.20), it fails to hydrolyze the alpha-1,4-glucosidic bonds of maltosaccharides. Dextran glucosidase (DGase, EC 3.2.1.70) hydrolyzes alpha-1,6-glucosidic linkages at the non-reducing end of panose, isomaltooligosaccharides and dextran to produce alpha-glucose.The common reaction chemistry of the alpha-amylase family enzymes is based on a two-step acid catalytic mechanism that requires two critical carboxylates: one acting as a general acid/base (Glu) and the other as a nucleophile (Asp). Both hydrolysis and transglycosylation proceed via the nucleophilic substitution reaction between the anomeric carbon, C1 and a nucleophile. Both enzymes contain the three catalytic residues (Asp, Glu and Asp) common to the alpha-amylase family as well as two histidine residues which are predicted to be critical to binding the glucose residue adjacent to the scissile bond in the substrates. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AOR37731.1 0.0 1 676 1 680
AKB34836.1 3.15e-233 45 672 24 649
QCR16547.1 1.51e-216 83 672 89 668
BBL63642.1 1.51e-216 83 672 89 668
AKB40115.1 1.51e-216 83 672 89 668

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
5X7U_A 2.20e-89 95 615 7 493
Trehalosesynthase from Thermobaculum terrenum [Thermobaculum terrenum ATCC BAA-798]
5H2T_A 1.17e-80 95 615 22 512
Structureof trehalose synthase [Thermomonospora curvata DSM 43183],5H2T_B Structure of trehalose synthase [Thermomonospora curvata DSM 43183],5H2T_C Structure of trehalose synthase [Thermomonospora curvata DSM 43183],5H2T_D Structure of trehalose synthase [Thermomonospora curvata DSM 43183],5H2T_E Structure of trehalose synthase [Thermomonospora curvata DSM 43183],5H2T_F Structure of trehalose synthase [Thermomonospora curvata DSM 43183],5H2T_G Structure of trehalose synthase [Thermomonospora curvata DSM 43183],5H2T_H Structure of trehalose synthase [Thermomonospora curvata DSM 43183]
3ZO9_A 3.81e-79 89 615 29 534
ChainA, Trehalose Synthase/amylase Tres [Mycolicibacterium smegmatis],3ZO9_B Chain B, Trehalose Synthase/amylase Tres [Mycolicibacterium smegmatis],3ZOA_A Chain A, Trehalose Synthase/amylase Tres [Mycolicibacterium smegmatis],3ZOA_B Chain B, Trehalose Synthase/amylase Tres [Mycolicibacterium smegmatis],5JY7_A Complex of Mycobacterium smegmatis trehalose synthase with maltokinase [Mycolicibacterium smegmatis MC2 155],5JY7_B Complex of Mycobacterium smegmatis trehalose synthase with maltokinase [Mycolicibacterium smegmatis MC2 155],5JY7_C Complex of Mycobacterium smegmatis trehalose synthase with maltokinase [Mycolicibacterium smegmatis MC2 155],5JY7_D Complex of Mycobacterium smegmatis trehalose synthase with maltokinase [Mycolicibacterium smegmatis MC2 155],5JY7_E Complex of Mycobacterium smegmatis trehalose synthase with maltokinase [Mycolicibacterium smegmatis MC2 155],5JY7_F Complex of Mycobacterium smegmatis trehalose synthase with maltokinase [Mycolicibacterium smegmatis MC2 155],5JY7_G Complex of Mycobacterium smegmatis trehalose synthase with maltokinase [Mycolicibacterium smegmatis MC2 155],5JY7_H Complex of Mycobacterium smegmatis trehalose synthase with maltokinase [Mycolicibacterium smegmatis MC2 155]
4LXF_A 1.04e-76 95 615 62 555
Crystalstructure of M. tuberculosis TreS [Mycobacterium tuberculosis H37Rv],4LXF_B Crystal structure of M. tuberculosis TreS [Mycobacterium tuberculosis H37Rv]
4WF7_A 1.38e-72 94 614 9 503
Crystalstructures of trehalose synthase from Deinococcus radiodurans reveal that a closed conformation is involved in the intramolecular isomerization catalysis [Deinococcus radiodurans R1],4WF7_B Crystal structures of trehalose synthase from Deinococcus radiodurans reveal that a closed conformation is involved in the intramolecular isomerization catalysis [Deinococcus radiodurans R1],4WF7_C Crystal structures of trehalose synthase from Deinococcus radiodurans reveal that a closed conformation is involved in the intramolecular isomerization catalysis [Deinococcus radiodurans R1],4WF7_D Crystal structures of trehalose synthase from Deinococcus radiodurans reveal that a closed conformation is involved in the intramolecular isomerization catalysis [Deinococcus radiodurans R1]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
A0R6E0 2.09e-78 89 615 29 534
Trehalose synthase/amylase TreS OS=Mycolicibacterium smegmatis (strain ATCC 700084 / mc(2)155) OX=246196 GN=treS PE=1 SV=1
P9WQ19 3.69e-76 95 615 43 536
Trehalose synthase/amylase TreS OS=Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) OX=83332 GN=treS PE=1 SV=1
P9WQ18 3.69e-76 95 615 43 536
Trehalose synthase/amylase TreS OS=Mycobacterium tuberculosis (strain CDC 1551 / Oshkosh) OX=83331 GN=treS PE=3 SV=1
P72235 1.42e-75 89 615 9 514
Trehalose synthase OS=Pimelobacter sp. (strain R48) OX=51662 GN=treS PE=3 SV=1
O06458 9.50e-70 95 615 5 490
Trehalose synthase OS=Thermus thermophilus OX=274 GN=treS PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as SP

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
0.000581 0.993045 0.005714 0.000218 0.000195 0.000182

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000000493_00437.