logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000000471_01045

You are here: Home > Sequence: MGYG000000471_01045

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species UBA7642 sp900770925
Lineage Bacteria; Firmicutes; Bacilli; RFN20; CAG-288; UBA7642; UBA7642 sp900770925
CAZyme ID MGYG000000471_01045
CAZy Family GT2
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
668 MGYG000000471_16|CGC1 77619.54 9.7789
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000000471 1588654 MAG Fiji Oceania
Gene Location Start: 31453;  End: 33459  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000000471_01045.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 6 170 1.6e-28 0.9823529411764705
GT4 496 601 2.9e-23 0.66875

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03812 GT4_CapH-like 1.28e-66 297 660 1 357
capsular polysaccharide biosynthesis glycosyltransferase CapH and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. capH in Staphylococcus aureus has been shown to be required for the biosynthesis of the type 1 capsular polysaccharide (CP1).
cd04185 GT_2_like_b 4.36e-66 7 236 2 202
Subfamily of Glycosyltransferase Family GT2 of unknown function. GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families.
COG1216 GT2 5.33e-41 1 277 2 292
Glycosyltransferase, GT2 family [Carbohydrate transport and metabolism].
cd03801 GT4_PimA-like 3.38e-32 297 601 1 298
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
cd03808 GT4_CapM-like 3.09e-29 376 601 76 294
capsular polysaccharide biosynthesis glycosyltransferase CapM and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. CapM in Staphylococcus aureus is required for the synthesis of type 1 capsular polysaccharides.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QDH97561.1 4.36e-78 1 293 1 300
AYC66889.1 4.36e-78 1 293 1 300
ADY85777.1 4.36e-78 1 293 1 300
BCT69962.1 4.36e-78 1 293 1 300
QGT61564.1 4.36e-78 1 293 1 300

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
6P61_A 5.55e-07 4 115 15 123
Structureof a Glycosyltransferase from Leptospira borgpetersenii serovar Hardjo-bovis (strain JB197) [Leptospira borgpetersenii serovar Hardjo-bovis str. JB197],6P61_B Structure of a Glycosyltransferase from Leptospira borgpetersenii serovar Hardjo-bovis (strain JB197) [Leptospira borgpetersenii serovar Hardjo-bovis str. JB197],6P61_C Structure of a Glycosyltransferase from Leptospira borgpetersenii serovar Hardjo-bovis (strain JB197) [Leptospira borgpetersenii serovar Hardjo-bovis str. JB197],6P61_D Structure of a Glycosyltransferase from Leptospira borgpetersenii serovar Hardjo-bovis (strain JB197) [Leptospira borgpetersenii serovar Hardjo-bovis str. JB197]
1H7L_A 7.49e-06 4 123 3 127
dTDP-MAGNESIUMCOMPLEX OF SPSA FROM BACILLUS SUBTILIS [Bacillus subtilis],1H7Q_A dTDP-MANGANESE COMPLEX OF SPSA FROM BACILLUS SUBTILIS [Bacillus subtilis],1QG8_A Native (Magnesium-Containing) Spsa From Bacillus Subtilis [Bacillus subtilis],1QGQ_A Udp-manganese Complex Of Spsa From Bacillus Subtilis [Bacillus subtilis],1QGS_A Udp-Magnesium Complex Of Spsa From Bacillus Subtilis [Bacillus subtilis]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P71055 2.66e-27 293 664 2 374
Putative glycosyltransferase EpsF OS=Bacillus subtilis (strain 168) OX=224308 GN=epsF PE=2 SV=1
A0R5Z2 6.21e-13 7 200 10 211
Galactofuranosyltransferase GlfT1 OS=Mycolicibacterium smegmatis (strain ATCC 700084 / mc(2)155) OX=246196 GN=glfT1 PE=1 SV=1
P9WMX3 5.22e-11 7 208 8 217
Galactofuranosyltransferase GlfT1 OS=Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) OX=83332 GN=glfT1 PE=1 SV=1
P9WMX2 5.22e-11 7 208 8 217
Galactofuranosyltransferase GlfT1 OS=Mycobacterium tuberculosis (strain CDC 1551 / Oshkosh) OX=83331 GN=glfT1 PE=3 SV=1
Q58459 1.02e-09 491 601 197 307
Uncharacterized glycosyltransferase MJ1059 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) OX=243232 GN=MJ1059 PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000049 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000000471_01045.