logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000000175_01229

You are here: Home > Sequence: MGYG000000175_01229

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Muricomes sp000509105
Lineage Bacteria; Firmicutes_A; Clostridia; Lachnospirales; Lachnospiraceae; Muricomes; Muricomes sp000509105
CAZyme ID MGYG000000175_01229
CAZy Family GH38
CAZyme Description Mannosylglycerate hydrolase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
901 MGYG000000175_5|CGC2 102768.96 5.0365
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000000175 5055107 Isolate China Asia
Gene Location Start: 174502;  End: 177207  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

EC 3.2.1.-

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH38 5 263 4.5e-67 0.9553903345724907

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
PRK09819 PRK09819 1.11e-158 1 898 1 875
mannosylglycerate hydrolase.
cd10814 GH38N_AMII_SpGH38_like 2.16e-102 5 283 1 271
N-terminal catalytic domain of SPGH38, a putative alpha-mannosidase of Streptococcus pyogenes, and its prokaryotic homologs; glycoside hydrolase family 38 (GH38). The subfamily is represented by SpGH38 of Streptococcus pyogenes, which has been assigned as a putative alpha-mannosidase, and is encoded by ORF spy1604. SpGH38 appears to exist as an elongated dimer and display alpha-1,3 mannosidase activity. It is active on disaccharides and some aryl glycosides. SpGH38 can also effectively deglycosylate human N-glycans in vitro. A divalent metal ion, such as a zinc ion, is required for its activity. SpGH38 is inhibited by swainsonine. The absence of any secretion signal peptide suggests that SpGH38 may be intracellular.
COG0383 AMS1 5.59e-88 1 889 1 938
Alpha-mannosidase [Carbohydrate transport and metabolism].
cd10815 GH38N_AMII_EcMngB_like 1.26e-85 5 282 1 269
N-terminal catalytic domain of Escherichia coli alpha-mannosidase MngB and its bacterial homologs; glycoside hydrolase family 38 (GH38). The bacterial subfamily is represented by Escherichia coli alpha-mannosidase MngB, which is encoded by the mngB gene (previously called ybgG). MngB exhibits alpha-mannosidase activity that converts 2-O-(6-phospho-alpha-mannosyl)-D-glycerate to mannose-6-phosphate and glycerate in the pathway which enables use of mannosyl-D-glycerate as a sole carbon source. A divalent metal ion is required for its activity.
cd10790 GH38N_AMII_1 4.59e-69 5 283 1 273
N-terminal catalytic domain of putative prokaryotic class II alpha-mannosidases; glycoside hydrolase family 38 (GH38). This mainly bacterial subfamily corresponds to a group of putative class II alpha-mannosidases, including various proteins assigned as alpha-mannosidases, Streptococcus pyogenes (SpGH38) encoded by ORF spy1604. Escherichia coli MngB encoded by the mngB/ybgG gene, and Thermotoga maritime TMM, and similar proteins. SpGH38 targets alpha-1,3 mannosidic linkages. SpGH38 appears to exist as an elongated dimer and display alpha-1,3 mannosidase activity. It is active on disaccharides and some aryl glycosides. SpGH38 can also effectively deglycosylate human N-glycans in vitro. MngB exhibits alpha-mannosidase activity that catalyzes the conversion of 2-O-(6-phospho-alpha-mannosyl)-D-glycerate to mannose-6-phosphate and glycerate in the pathway which enables use of mannosyl-D-glycerate as a sole carbon source. TMM is a homodimeric enzyme that hydrolyzes p-nitrophenyl-alpha-D-mannopyranoside, alpha -1,2-mannobiose, alpha -1,3-mannobiose, alpha -1,4-mannobiose, and alpha -1,6-mannobiose. The GH38 family contains retaining glycosyl hydrolases that employ a two-step mechanism involving the formation of a covalent glycosyl enzyme complex. Two carboxylic acids positioned within the active site act in concert: one as a catalytic nucleophile and the other as a general acid/base catalyst. Divalent metal ions, such as zinc or cobalt ions, are suggested to be required for the catalytic activities of typical class II alpha-mannosidases. However, TMM requires the cobalt or cadmium for its activity. The cadmium ion dependency is unique to TMM. Moreover, TMM is inhibited by swainsonine but not 1-deoxymannojirimycin, which is in agreement with the features of cytosolic alpha-mannosidase.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AEF82524.1 1.50e-176 1 895 3 897
BBH93932.1 1.62e-154 3 895 4 1008
QBD80399.1 9.03e-145 2 894 3 1012
BBH89963.1 1.47e-143 2 898 3 1033
QSO51568.1 7.08e-142 2 897 3 902

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
5KBP_A 2.79e-104 1 845 4 850
Thecrystal structure of an alpha-mannosidase from Enterococcus faecalis V583 [Enterococcus faecalis V583],5KBP_B The crystal structure of an alpha-mannosidase from Enterococcus faecalis V583 [Enterococcus faecalis V583]
3LVT_A 5.26e-98 3 845 6 850
TheCrystal Structure of a Protein in the Glycosyl Hydrolase Family 38 from Enterococcus faecalis to 2.55A [Enterococcus faecalis V583]
2WYH_A 2.02e-93 1 849 23 879
Structureof the Streptococcus pyogenes family GH38 alpha-mannosidase [Streptococcus pyogenes M1 GAS],2WYH_B Structure of the Streptococcus pyogenes family GH38 alpha-mannosidase [Streptococcus pyogenes M1 GAS],2WYI_A Structure of the Streptococcus pyogenes family GH38 alpha-mannosidase complexed with swainsonine [Streptococcus pyogenes M1 GAS],2WYI_B Structure of the Streptococcus pyogenes family GH38 alpha-mannosidase complexed with swainsonine [Streptococcus pyogenes M1 GAS]
6LZ1_A 3.11e-09 3 677 280 877
Structureof S.pombe alpha-mannosidase Ams1 [Schizosaccharomyces pombe 972h-],6LZ1_B Structure of S.pombe alpha-mannosidase Ams1 [Schizosaccharomyces pombe 972h-],6LZ1_C Structure of S.pombe alpha-mannosidase Ams1 [Schizosaccharomyces pombe 972h-],6LZ1_D Structure of S.pombe alpha-mannosidase Ams1 [Schizosaccharomyces pombe 972h-]
7DD9_A 3.36e-09 3 677 280 877
ChainA, Alpha-mannosidase,ZZ-type zinc finger-containing protein P35G2.11c,Maltose/maltodextrin-binding periplasmic protein [synthetic construct],7DD9_C Chain C, Alpha-mannosidase,ZZ-type zinc finger-containing protein P35G2.11c,Maltose/maltodextrin-binding periplasmic protein [synthetic construct],7DD9_E Chain E, Alpha-mannosidase,ZZ-type zinc finger-containing protein P35G2.11c,Maltose/maltodextrin-binding periplasmic protein [synthetic construct],7DD9_G Chain G, Alpha-mannosidase,ZZ-type zinc finger-containing protein P35G2.11c,Maltose/maltodextrin-binding periplasmic protein [synthetic construct]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q9KER1 7.15e-96 1 898 1 896
Putative mannosylglycerate hydrolase OS=Alkalihalobacillus halodurans (strain ATCC BAA-125 / DSM 18197 / FERM 7344 / JCM 9153 / C-125) OX=272558 GN=mngB PE=3 SV=2
P54746 6.20e-91 5 844 6 821
Mannosylglycerate hydrolase OS=Escherichia coli (strain K12) OX=83333 GN=mngB PE=1 SV=2
Q9NTJ4 3.56e-12 7 376 254 607
Alpha-mannosidase 2C1 OS=Homo sapiens OX=9606 GN=MAN2C1 PE=1 SV=1
Q54K67 7.26e-11 11 362 262 595
Alpha-mannosidase G OS=Dictyostelium discoideum OX=44689 GN=manG PE=1 SV=1
Q91W89 8.29e-10 7 365 253 595
Alpha-mannosidase 2C1 OS=Mus musculus OX=10090 GN=Man2c1 PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000059 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000000175_01229.