Browse dbCAN-PUL Entries

PULID Characterization Method(s) Substrate Organism Publication Publish Date Type Num Genes Num CAZymes CazyFamily
PUL0007 sequence homology analysis galactan Leuconostoc gelidum <a href=https://pubmed.ncbi.nlm.nih.gov/27274361/>27274361</a>
Complete genome sequence of Leuconostoc gelidum subsp. gasicomitatum KG16-1, isolated from vacuum-packaged vegetable sausages. Stand Genomic Sci. 2016 Jun 7;11:40. doi: 10.1186/s40793-016-0164-8. eCollection 2016.
2016 degradation 8 2 GH42, GH53
PUL0014 sequence homology analysis, growth assay pectin Geobacillus thermodenitrificans <a href=https://pubmed.ncbi.nlm.nih.gov/28900693/>28900693</a>
Complete Genome Sequence of Geobacillus thermodenitrificans T12, A Potential Host for Biotechnological Applications. Curr Microbiol. 2018 Jan;75(1):49-56. doi: 10.1007/s00284-017-1349-0. Epub 2017 Sep 12.
2018 Jan degradation 9 2 GH105, PL1_6
PUL0051 sequence homology analysis, NMR, size-exclusion chromatography (SEC), clone and expression, recombinant protein expression, enzyme kinetic analysis alginate Cellulophaga lytica <a href=https://pubmed.ncbi.nlm.nih.gov/29795267/>29795267</a>
Ancient acquisition of "alginate utilization loci" by human gut microbiota. Sci Rep. 2018 May 23;8(1):8075. doi: 10.1038/s41598-018-26104-1.
2018 May 23 degradation 6 2 PL17_2, PL17, PL6, PL6_1
PUL0052 sequence homology analysis, NMR, size-exclusion chromatography (SEC), clone and expression, recombinant protein expression, enzyme kinetic analysis alginate Maricaulis maris <a href=https://pubmed.ncbi.nlm.nih.gov/29795267/>29795267</a>
Ancient acquisition of "alginate utilization loci" by human gut microbiota. Sci Rep. 2018 May 23;8(1):8075. doi: 10.1038/s41598-018-26104-1.
2018 May 23 degradation 10 2 PL17_2, PL17, PL6, PL6_1
PUL0053 sequence homology analysis, NMR, size-exclusion chromatography (SEC), clone and expression, recombinant protein expression, enzyme kinetic analysis alginate Stenotrophomonas maltophilia <a href=https://pubmed.ncbi.nlm.nih.gov/29795267/>29795267</a>
Ancient acquisition of "alginate utilization loci" by human gut microbiota. Sci Rep. 2018 May 23;8(1):8075. doi: 10.1038/s41598-018-26104-1.
2018 May 23 degradation 8 2 PL17_2, PL17, PL6
PUL0054 sequence homology analysis, NMR, size-exclusion chromatography (SEC), clone and expression, recombinant protein expression, enzyme kinetic analysis alginate Alteromonas macleodii <a href=https://pubmed.ncbi.nlm.nih.gov/29795267/>29795267</a>
Ancient acquisition of "alginate utilization loci" by human gut microbiota. Sci Rep. 2018 May 23;8(1):8075. doi: 10.1038/s41598-018-26104-1.
2018 May 23 degradation 9 2 PL17_2, PL17, PL6, PL6_1
PUL0055 sequence homology analysis, NMR, size-exclusion chromatography (SEC), clone and expression, recombinant protein expression, enzyme kinetic analysis alginate Bacteroides sp. 1_1_30 <a href=https://pubmed.ncbi.nlm.nih.gov/29795267/>29795267</a>
Ancient acquisition of "alginate utilization loci" by human gut microbiota. Sci Rep. 2018 May 23;8(1):8075. doi: 10.1038/s41598-018-26104-1.
2018 May 23 degradation 7 2 PL17_2, PL17, PL6, PL6_1
PUL0056 sequence homology analysis, NMR, size-exclusion chromatography (SEC), clone and expression, recombinant protein expression, enzyme kinetic analysis alginate Bacteroides eggerthii <a href=https://pubmed.ncbi.nlm.nih.gov/29795267/>29795267</a>
Ancient acquisition of "alginate utilization loci" by human gut microbiota. Sci Rep. 2018 May 23;8(1):8075. doi: 10.1038/s41598-018-26104-1.
2018 May 23 degradation 5 3 CE20, PL17_2, PL17, PL6, PL6_1
PUL0091 sequence homology analysis host glycan Phocaeicola vulgatus <a href=https://pubmed.ncbi.nlm.nih.gov/31275257/>31275257</a>
Investigating Host Microbiota Relationships Through Functional Metagenomics. Front Microbiol. 2019 Jun 7;10:1286. doi: 10.3389/fmicb.2019.01286. eCollection 2019.
2019 degradation 8 7 CE3, CE20, CE9, GH2, GH20, GH20, CBM32, GH92
PUL0092 sequence homology analysis host glycan Phocaeicola vulgatus <a href=https://pubmed.ncbi.nlm.nih.gov/31275257/>31275257</a>
Investigating Host Microbiota Relationships Through Functional Metagenomics. Front Microbiol. 2019 Jun 7;10:1286. doi: 10.3389/fmicb.2019.01286. eCollection 2019.
2019 degradation 10 5 CBM93, GH33, CE3, CE20, GH2, GH20, GH20, CBM32
PUL0097 sequence homology analysis host glycan Bacteroides massiliensis <a href=https://pubmed.ncbi.nlm.nih.gov/31275257/>31275257</a>
Investigating Host Microbiota Relationships Through Functional Metagenomics. Front Microbiol. 2019 Jun 7;10:1286. doi: 10.3389/fmicb.2019.01286. eCollection 2019.
2019 degradation 15 10 CBM93, GH33, CE3, CE3, CE20, CE9, GH2, GH20, GH92
PUL0098 sequence homology analysis host glycan Bacteroides plebeius <a href=https://pubmed.ncbi.nlm.nih.gov/31275257/>31275257</a>
Investigating Host Microbiota Relationships Through Functional Metagenomics. Front Microbiol. 2019 Jun 7;10:1286. doi: 10.3389/fmicb.2019.01286. eCollection 2019.
2019 degradation 12 1 CBM93, GH33
PUL0101 sequence homology analysis host glycan Bacteroides plebeius <a href=https://pubmed.ncbi.nlm.nih.gov/31275257/>31275257</a>
Investigating Host Microbiota Relationships Through Functional Metagenomics. Front Microbiol. 2019 Jun 7;10:1286. doi: 10.3389/fmicb.2019.01286. eCollection 2019.
2019 degradation 19 4 CBM67, GH78, GH115, GH3, GH97
PUL0108 sequence homology analysis host glycan Bacteroides uniformis <a href=https://pubmed.ncbi.nlm.nih.gov/31275257/>31275257</a>
Investigating Host Microbiota Relationships Through Functional Metagenomics. Front Microbiol. 2019 Jun 7;10:1286. doi: 10.3389/fmicb.2019.01286. eCollection 2019.
2019 degradation 27 2 GH2, GH3
PUL0113 sequence homology analysis host glycan Faecalibacterium prausnitzii <a href=https://pubmed.ncbi.nlm.nih.gov/31275257/>31275257</a>
Investigating Host Microbiota Relationships Through Functional Metagenomics. Front Microbiol. 2019 Jun 7;10:1286. doi: 10.3389/fmicb.2019.01286. eCollection 2019.
2019 degradation 23 1 GH1
PUL0126 growth assay, sequence homology analysis alginate Alteromonas sp. 76-1 <a href=https://pubmed.ncbi.nlm.nih.gov/30936857/>30936857</a>
Adaptations of Alteromonas sp. 76-1 to Polysaccharide Degradation: A CAZyme Plasmid for Ulvan Degradation and Two Alginolytic Systems. Front Microbiol. 2019 Mar 18;10:504. doi: 10.3389/fmicb.2019.00504. eCollection 2019.
2019 degradation 8 2 PL6, PL6_1, PL7_5
PUL0127 growth assay, sequence homology analysis alginate Alteromonas sp. 76-1 <a href=https://pubmed.ncbi.nlm.nih.gov/30936857/>30936857</a>
Adaptations of Alteromonas sp. 76-1 to Polysaccharide Degradation: A CAZyme Plasmid for Ulvan Degradation and Two Alginolytic Systems. Front Microbiol. 2019 Mar 18;10:504. doi: 10.3389/fmicb.2019.00504. eCollection 2019.
2019 degradation 12 4 CBM32, PL7_5, PL6_3, PL6, PL6_1, PL7_5
PUL0136 sequence homology analysis pectin Pseudoalteromonas haloplanktis <a href=https://pubmed.ncbi.nlm.nih.gov/30341080/>30341080</a>
Biochemical Reconstruction of a Metabolic Pathway from a Marine Bacterium Reveals Its Mechanism of Pectin Depolymerization. Appl Environ Microbiol. 2018 Dec 13;85(1):e02114-18. doi: 10.1128/AEM.02114-18. Print 2019 Jan 1.
2019 Jan 1 degradation 26 6 CE12, CE8, PL1_5, GH105, GH28, PL1_2
PUL0137 sequence homology analysis galactan Bifidobacterium animalis subsp. animalis <a href=https://pubmed.ncbi.nlm.nih.gov/30306201/>30306201</a>
Staying alive: growth and survival of Bifidobacterium animalis subsp. animalis under in vitro and in vivo conditions. Appl Microbiol Biotechnol. 2018 Dec;102(24):10645-10663. doi: 10.1007/s00253-018-9413-7. Epub 2018 Oct 10.
2018 Dec degradation 3 1 GH2
PUL0138 sequence homology analysis raffinose Bifidobacterium animalis subsp. animalis <a href=https://pubmed.ncbi.nlm.nih.gov/30306201/>30306201</a>
Staying alive: growth and survival of Bifidobacterium animalis subsp. animalis under in vitro and in vivo conditions. Appl Microbiol Biotechnol. 2018 Dec;102(24):10645-10663. doi: 10.1007/s00253-018-9413-7. Epub 2018 Oct 10.
2018 Dec degradation 7 2 GH36
PUL0139 sequence homology analysis arabinan Bifidobacterium animalis subsp. animalis <a href=https://pubmed.ncbi.nlm.nih.gov/30306201/>30306201</a>
Staying alive: growth and survival of Bifidobacterium animalis subsp. animalis under in vitro and in vivo conditions. Appl Microbiol Biotechnol. 2018 Dec;102(24):10645-10663. doi: 10.1007/s00253-018-9413-7. Epub 2018 Oct 10.
2018 Dec degradation 12 1 GH51_1
PUL0140 sequence homology analysis xylan Bifidobacterium animalis subsp. animalis <a href=https://pubmed.ncbi.nlm.nih.gov/30306201/>30306201</a>
Staying alive: growth and survival of Bifidobacterium animalis subsp. animalis under in vitro and in vivo conditions. Appl Microbiol Biotechnol. 2018 Dec;102(24):10645-10663. doi: 10.1007/s00253-018-9413-7. Epub 2018 Oct 10.
2018 Dec degradation 11 4 CE20, CE20, GH43_10, CBM91, GH43_11, CBM91, GH43_12
PUL0141 sequence homology analysis starch Bifidobacterium animalis subsp. animalis <a href=https://pubmed.ncbi.nlm.nih.gov/30306201/>30306201</a>
Staying alive: growth and survival of Bifidobacterium animalis subsp. animalis under in vitro and in vivo conditions. Appl Microbiol Biotechnol. 2018 Dec;102(24):10645-10663. doi: 10.1007/s00253-018-9413-7. Epub 2018 Oct 10.
2018 Dec degradation 4 1 GH13_18
PUL0142 sequence homology analysis starch Bifidobacterium animalis subsp. animalis <a href=https://pubmed.ncbi.nlm.nih.gov/30306201/>30306201</a>
Staying alive: growth and survival of Bifidobacterium animalis subsp. animalis under in vitro and in vivo conditions. Appl Microbiol Biotechnol. 2018 Dec;102(24):10645-10663. doi: 10.1007/s00253-018-9413-7. Epub 2018 Oct 10.
2018 Dec degradation 5 1 GH13_30
PUL0146 sequence homology analysis carrageenan Pseudoalteromonas atlantica <a href=https://pubmed.ncbi.nlm.nih.gov/30524390/>30524390</a>
Evolutionary Evidence of Algal Polysaccharide Degradation Acquisition by Pseudoalteromonas carrageenovora 9(T) to Adapt to Macroalgal Niches. Front Microbiol. 2018 Nov 22;9:2740. doi: 10.3389/fmicb.2018.02740. eCollection 2018.
2018 degradation 23 3 GH16_13, GH167, GH82
PUL0147 sequence homology analysis carrageenan Pseudoalteromonas carrageenovora <a href=https://pubmed.ncbi.nlm.nih.gov/30524390/>30524390</a>
Evolutionary Evidence of Algal Polysaccharide Degradation Acquisition by Pseudoalteromonas carrageenovora 9(T) to Adapt to Macroalgal Niches. Front Microbiol. 2018 Nov 22;9:2740. doi: 10.3389/fmicb.2018.02740. eCollection 2018.
2018 degradation 30 6 GH150, GH16_13, GH16_17, GH167, GH82
PUL0148 sequence homology analysis carrageenan Zobellia galactanivorans <a href=https://pubmed.ncbi.nlm.nih.gov/30524390/>30524390</a>
Evolutionary Evidence of Algal Polysaccharide Degradation Acquisition by Pseudoalteromonas carrageenovora 9(T) to Adapt to Macroalgal Niches. Front Microbiol. 2018 Nov 22;9:2740. doi: 10.3389/fmicb.2018.02740. eCollection 2018.
2018 degradation 15 4 GH127, GH129
PUL0149 sequence homology analysis carrageenan Zobellia galactanivorans <a href=https://pubmed.ncbi.nlm.nih.gov/30524390/>30524390</a>
Evolutionary Evidence of Algal Polysaccharide Degradation Acquisition by Pseudoalteromonas carrageenovora 9(T) to Adapt to Macroalgal Niches. Front Microbiol. 2018 Nov 22;9:2740. doi: 10.3389/fmicb.2018.02740. eCollection 2018.
2018 degradation 10 2 GH110
PUL0150 sequence homology analysis alginate Pseudoalteromonas carrageenovora <a href=https://pubmed.ncbi.nlm.nih.gov/30524390/>30524390</a>
Evolutionary Evidence of Algal Polysaccharide Degradation Acquisition by Pseudoalteromonas carrageenovora 9(T) to Adapt to Macroalgal Niches. Front Microbiol. 2018 Nov 22;9:2740. doi: 10.3389/fmicb.2018.02740. eCollection 2018.
2018 degradation 14 3 PL17_2, PL17, PL6_3, PL6, PL6_1
PUL0151 sequence homology analysis, Northern Blot, RT-qPCR, electrophoretic mobility shift assay, clone and expression, gene deletion mutant and growth assay alginate Zobellia galactanivorans <a href=https://pubmed.ncbi.nlm.nih.gov/30524390/>30524390</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/32585009/>32585009</a>
Evolutionary Evidence of Algal Polysaccharide Degradation Acquisition by Pseudoalteromonas carrageenovora 9(T) to Adapt to Macroalgal Niches. Regulation of alginate catabolism involves a GntR family repressor in the marine flavobacterium Zobellia galactanivorans DsijT. Front Microbiol. 2018 Nov 22;9:2740. doi: 10.3389/fmicb.2018.02740. eCollection 2018. Nucleic Acids Res. 2020 Aug 20;48(14):7786-7800. doi: 10.1093/nar/gkaa533.
2018,2020 Aug 20 degradation 12 2 PL17_2, PL17, PL7
PUL0152 sequence homology analysis alginate Pseudoalteromonas atlantica <a href=https://pubmed.ncbi.nlm.nih.gov/30524390/>30524390</a>
Evolutionary Evidence of Algal Polysaccharide Degradation Acquisition by Pseudoalteromonas carrageenovora 9(T) to Adapt to Macroalgal Niches. Front Microbiol. 2018 Nov 22;9:2740. doi: 10.3389/fmicb.2018.02740. eCollection 2018.
2018 degradation 8 1 PL6, PL6_1
PUL0160 mass spectrometry, sequence homology analysis alpha-mannan Salegentibacter sp. Hel_I_6 <a href=https://pubmed.ncbi.nlm.nih.gov/30246424/>30246424</a>
Alpha- and beta-mannan utilization by marine Bacteroidetes. Environ Microbiol. 2018 Nov;20(11):4127-4140. doi: 10.1111/1462-2920.14414. Epub 2018 Oct 16.
2018 Nov degradation 35 12 AA3, CBM32, GH125, GH2, GH43_34, GH76, GH92
PUL0161 mass spectrometry, sequence homology analysis, gene deletion mutant and growth assay, microarray, qPCR alpha-mannan Bacteroides thetaiotaomicron <a href=https://pubmed.ncbi.nlm.nih.gov/30246424/>30246424</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/25567280/>25567280</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/18996345/>18996345</a>
Alpha- and beta-mannan utilization by marine Bacteroidetes. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Environ Microbiol. 2018 Nov;20(11):4127-4140. doi: 10.1111/1462-2920.14414. Epub 2018 Oct 16. Nature. 2015 Jan 8;517(7533):165-169. doi: 10.1038/nature13995. Cell Host Microbe. 2008 Nov 13;4(5):447-57. doi: 10.1016/j.chom.2008.09.007.
2018 Nov,2015 Jan 8,2008 Nov 13 degradation 26 6 GH125, GH67, GH76, GH92, GH97
PUL0162 mass spectrometry, sequence homology analysis alpha-mannan Bacteroides thetaiotaomicron <a href=https://pubmed.ncbi.nlm.nih.gov/30246424/>30246424</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/18996345/>18996345</a>
Alpha- and beta-mannan utilization by marine Bacteroidetes. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Environ Microbiol. 2018 Nov;20(11):4127-4140. doi: 10.1111/1462-2920.14414. Epub 2018 Oct 16. Cell Host Microbe. 2008 Nov 13;4(5):447-57. doi: 10.1016/j.chom.2008.09.007.
2018 Nov,2008 Nov 13 degradation 13 2 GH92, GH99
PUL0163 mass spectrometry, sequence homology analysis, microarray, qPCR alpha-mannan Bacteroides thetaiotaomicron <a href=https://pubmed.ncbi.nlm.nih.gov/30246424/>30246424</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/18996345/>18996345</a>
Alpha- and beta-mannan utilization by marine Bacteroidetes. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Environ Microbiol. 2018 Nov;20(11):4127-4140. doi: 10.1111/1462-2920.14414. Epub 2018 Oct 16. Cell Host Microbe. 2008 Nov 13;4(5):447-57. doi: 10.1016/j.chom.2008.09.007.
2018 Nov,2008 Nov 13 degradation 21 9 GH125, GH130_3, GH38, CBM32, GH76, GH92, GT32
PUL0164 mass spectrometry, sequence homology analysis, differential gene expression beta-mannan Leeuwenhoekiella sp. MAR_2009_132 <a href=https://pubmed.ncbi.nlm.nih.gov/30246424/>30246424</a>
Alpha- and beta-mannan utilization by marine Bacteroidetes. Environ Microbiol. 2018 Nov;20(11):4127-4140. doi: 10.1111/1462-2920.14414. Epub 2018 Oct 16.
2018 Nov degradation 19 12 CBM8, CE2, CE20, GH130_1, GH26, GH27, GH3, GH5_2, GH5_7, GH9
PUL0165 mass spectrometry, sequence homology analysis, differential gene expression beta-mannan Salegentibacter sp. Hel_I_6 <a href=https://pubmed.ncbi.nlm.nih.gov/30246424/>30246424</a>
Alpha- and beta-mannan utilization by marine Bacteroidetes. Environ Microbiol. 2018 Nov;20(11):4127-4140. doi: 10.1111/1462-2920.14414. Epub 2018 Oct 16.
2018 Nov degradation 16 8 CE20, GH130_1, GH26, GH27, GH30, GH5_2, GH9
PUL0167 mass spectrometry, sequence homology analysis beta-mannan Bacteroides ovatus <a href=https://pubmed.ncbi.nlm.nih.gov/30246424/>30246424</a>
Alpha- and beta-mannan utilization by marine Bacteroidetes. Environ Microbiol. 2018 Nov;20(11):4127-4140. doi: 10.1111/1462-2920.14414. Epub 2018 Oct 16.
2018 Nov degradation 12 4 GH130_1, GH26, GH36
PUL0239 fosmid library screen, sequence homology analysis cellulose Prevotella sp. Sc00026 <a href=https://pubmed.ncbi.nlm.nih.gov/24448980/>24448980</a>
Analysis of the bovine rumen microbiome reveals a diversity of Sus-like polysaccharide utilization loci from the bacterial phylum Bacteroidetes. J Ind Microbiol Biotechnol. 2014 Mar;41(3):601-6. doi: 10.1007/s10295-013-1395-y. Epub 2014 Jan 22.
2014 Mar degradation 16 9 CE20, CE7, GH130_1, GH26, GH26, GH5_4, GH3, GH36, GH5_7
PUL0240 fosmid library screen, sequence homology analysis cellulose Prevotella sp. Sc00028 <a href=https://pubmed.ncbi.nlm.nih.gov/24448980/>24448980</a>
Analysis of the bovine rumen microbiome reveals a diversity of Sus-like polysaccharide utilization loci from the bacterial phylum Bacteroidetes. J Ind Microbiol Biotechnol. 2014 Mar;41(3):601-6. doi: 10.1007/s10295-013-1395-y. Epub 2014 Jan 22.
2014 Mar degradation 10 3 GH26, GH31_3, GH9
PUL0241 fosmid library screen, sequence homology analysis cellulose Prevotella sp. Sc00033 <a href=https://pubmed.ncbi.nlm.nih.gov/24448980/>24448980</a>
Analysis of the bovine rumen microbiome reveals a diversity of Sus-like polysaccharide utilization loci from the bacterial phylum Bacteroidetes. J Ind Microbiol Biotechnol. 2014 Mar;41(3):601-6. doi: 10.1007/s10295-013-1395-y. Epub 2014 Jan 22.
2014 Mar degradation 6 2 GH36, GH5_4
PUL0242 fosmid library screen, sequence homology analysis cellulose Prevotella sp. Sc00044 <a href=https://pubmed.ncbi.nlm.nih.gov/24448980/>24448980</a>
Analysis of the bovine rumen microbiome reveals a diversity of Sus-like polysaccharide utilization loci from the bacterial phylum Bacteroidetes. J Ind Microbiol Biotechnol. 2014 Mar;41(3):601-6. doi: 10.1007/s10295-013-1395-y. Epub 2014 Jan 22.
2014 Mar degradation 9 3 GH26, GH31_3, GH5_4
PUL0243 fosmid library screen, sequence homology analysis cellulose Prevotella sp. Sc00066 <a href=https://pubmed.ncbi.nlm.nih.gov/24448980/>24448980</a>
Analysis of the bovine rumen microbiome reveals a diversity of Sus-like polysaccharide utilization loci from the bacterial phylum Bacteroidetes. J Ind Microbiol Biotechnol. 2014 Mar;41(3):601-6. doi: 10.1007/s10295-013-1395-y. Epub 2014 Jan 22.
2014 Mar degradation 11 3 GH36, GH5_38, GH94
PUL0248 sequence homology analysis capsule polysaccharide degradation Vibrio vulnificus <a href=https://pubmed.ncbi.nlm.nih.gov/24102883/>24102883</a>
Role of capsular polysaccharide (CPS) in biofilm formation and regulation of CPS production by quorum-sensing in Vibrio vulnificus. Mol Microbiol. 2013 Nov;90(4):841-57. doi: 10.1111/mmi.12401. Epub 2013 Oct 10.
2013 Nov degradation 19 3 GT4, PL12_3
PUL0602 sequence homology analysis xylan Parageobacillus thermoglucosidasius <a href=https://pubmed.ncbi.nlm.nih.gov/26442136/>26442136</a>
Complete genome sequence of Geobacillus thermoglucosidasius C56-YS93, a novel biomass degrader isolated from obsidian hot spring in Yellowstone National Park. Stand Genomic Sci. 2015 Oct 5;10:73. doi: 10.1186/s40793-015-0031-z. eCollection 2015.
2015 degradation 26 6 CE4, GH10, GH39, GH52, GH67
PUL0631 growth assay, sequence homology analysis alginate Pseudooceanicola algae Lw-13e <a href=https://pubmed.ncbi.nlm.nih.gov/33310406/>33310406</a>
Pseudooceanicola algae sp. nov., isolated from the marine macroalga Fucus spiralis, shows genomic and physiological adaptations for an algae-associated lifestyle. Syst Appl Microbiol. 2021 Jan;44(1):126166. doi: 10.1016/j.syapm.2020.126166. Epub 2020 Nov 27.
2021 Jan degradation 8 1 PL15_1
PUL0654 sequence homology analysis alginate Maribacter dokdonensis 62-1 <a href=https://pubmed.ncbi.nlm.nih.gov/33912144/>33912144</a>
CAZymes in Maribacter dokdonensis 62-1 From the Patagonian Shelf: Genomics and Physiology Compared to Related Flavobacteria and a Co-occurring Alteromonas Strain. Front Microbiol. 2021 Apr 12;12:628055. doi: 10.3389/fmicb.2021.628055. eCollection 2021.
2021 degradation 38 7 GH144, GH3, PL12, PL17_2, PL17, PL6, PL6_1
PUL0655 sequence homology analysis alginate Maribacter dokdonensis 62-1 <a href=https://pubmed.ncbi.nlm.nih.gov/33912144/>33912144</a>
CAZymes in Maribacter dokdonensis 62-1 From the Patagonian Shelf: Genomics and Physiology Compared to Related Flavobacteria and a Co-occurring Alteromonas Strain. Front Microbiol. 2021 Apr 12;12:628055. doi: 10.3389/fmicb.2021.628055. eCollection 2021.
2021 degradation 10 2 PL7