| PULID | Characterization Method(s) | Substrate | Organism | Publication | Publish Date | Type | Num Genes | Num CAZymes | CazyFamily |
|---|---|---|---|---|---|---|---|---|---|
| PUL0010 | enzyme activity assay, liquid chromatography and mass spectrometry | xylan | Geobacillus thermodenitrificans | <a href=https://pubmed.ncbi.nlm.nih.gov/28616644/>28616644</a> Synergistic hydrolysis of xylan using novel xylanases, beta-xylosidases, and an alpha-L-arabinofuranosidase from Geobacillus thermodenitrificans NG80-2. Appl Microbiol Biotechnol. 2017 Aug;101(15):6023-6037. doi: 10.1007/s00253-017-8341-2. Epub 2017 Jun 14. |
2017 Aug | degradation | 42 | 8 | CE4, GH10, GH39, GH43_11, CBM91, GH51_1, GH52, GH67 |
| PUL0199 | enzyme activity assay, liquid chromatography and mass spectrometry | alginate | Saccharophagus degradans | <a href=https://pubmed.ncbi.nlm.nih.gov/26458373/>26458373</a> Putative Alginate Assimilation Process of the Marine Bacterium Saccharophagus degradans 2-40 Based on Quantitative Proteomic Analysis. Mar Biotechnol (NY). 2016 Feb;18(1):15-23. doi: 10.1007/s10126-015-9667-3. Epub 2015 Oct 12. |
2016 Feb | degradation | 17 | 6 | CBM16, CBM32, PL18, PL17_2, PL17, PL6, PL6, PL6_1, PL7_5 |
| PUL0283 | microarray, high-performance anion-exchange chromatography, liquid chromatography and mass spectrometry | galactooligosaccharide | Bifidobacterium breve | <a href=https://pubmed.ncbi.nlm.nih.gov/23199239/>23199239</a> Transcriptional and functional characterization of genetic elements involved in galacto-oligosaccharide utilization by Bifidobacterium breve UCC2003. Microb Biotechnol. 2013 Jan;6(1):67-79. doi: 10.1111/1751-7915.12011. Epub 2012 Dec 2. |
2013 Jan | degradation | 6 | 2 | GH42, GH53, CBM61 |
| PUL0284 | microarray, high-performance anion-exchange chromatography, liquid chromatography and mass spectrometry | galactan | Bifidobacterium breve | <a href=https://pubmed.ncbi.nlm.nih.gov/23199239/>23199239</a> Transcriptional and functional characterization of genetic elements involved in galacto-oligosaccharide utilization by Bifidobacterium breve UCC2003. Microb Biotechnol. 2013 Jan;6(1):67-79. doi: 10.1111/1751-7915.12011. Epub 2012 Dec 2. |
2013 Jan | degradation | 3 | 1 | GH2 |
| PUL0285 | microarray, high-performance anion-exchange chromatography, liquid chromatography and mass spectrometry | galactooligosaccharide | Bifidobacterium breve | <a href=https://pubmed.ncbi.nlm.nih.gov/23199239/>23199239</a> Transcriptional and functional characterization of genetic elements involved in galacto-oligosaccharide utilization by Bifidobacterium breve UCC2003. Microb Biotechnol. 2013 Jan;6(1):67-79. doi: 10.1111/1751-7915.12011. Epub 2012 Dec 2. |
2013 Jan | degradation | 6 | 1 | GH42 |
| PUL0320 | liquid chromatography and mass spectrometry, mass spectrometry, target decoy database analysis | cellulose | Caldicellulosiruptor bescii | <a href=https://pubmed.ncbi.nlm.nih.gov/29475869/>29475869</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/29588665/>29588665</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/21227922/>21227922</a> Genus-Wide Assessment of Lignocellulose Utilization in the Extremely Thermophilic Genus Caldicellulosiruptor by Genomic, Pangenomic, and Metagenomic Analyses. The diversity and specificity of the extracellular proteome in the cellulolytic bacterium Caldicellulosiruptor bescii is driven by the nature of the cellulosic growth substrate. Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725. Appl Environ Microbiol. 2018 Apr 16;84(9):e02694-17. doi: 10.1128/AEM.02694-17. Print 2018 May 1. Biotechnol Biofuels. 2018 Mar 23;11:80. doi: 10.1186/s13068-018-1076-1. eCollection 2018. Nucleic Acids Res. 2011 Apr;39(8):3240-54. doi: 10.1093/nar/gkq1281. Epub 2011 Jan 11. |
2018 May 1,2018,2011 Apr | degradation | 19 | 10 | CBM66, PL3_1, CBM66, PL9_1, GH10, CBM3, CBM3, GH48, GH5_8, CBM3, CBM3, CBM3, GH5_1, GH5_8, CBM3, CBM3, GH44, GH74, GH74, GH74, GH74, CBM3, CBM3, GH48, GH9, CBM3, CBM3, CBM3, GH48, GH9, CBM3, CBM3, CBM3, GH5_8, GT39, PL11, CBM3 |
| PUL0322 | liquid chromatography and mass spectrometry | cellulose | Caldicellulosiruptor danielii | <a href=https://pubmed.ncbi.nlm.nih.gov/29475869/>29475869</a> Genus-Wide Assessment of Lignocellulose Utilization in the Extremely Thermophilic Genus Caldicellulosiruptor by Genomic, Pangenomic, and Metagenomic Analyses. Appl Environ Microbiol. 2018 Apr 16;84(9):e02694-17. doi: 10.1128/AEM.02694-17. Print 2018 May 1. |
2018 May 1 | degradation | 19 | 12 | CBM22, CBM22, GH10, CBM3, CBM3, GH5_1, CBM66, PL3_1, CBM66, PL9_1, GH10, CBM3, GH12, GH48, GH5_8, CBM3, CBM3, GH44, GH74, GH74, GH74, GH74, CBM3, CBM3, GH48, GH9, CBM3, CBM3, CBM3, GH48, GH9, CBM3, CBM3, CBM3, GH5_8, GT39, PL11, CBM3 |
| PUL0598 | liquid chromatography and mass spectrometry, differential gene expression | xylan | Clostridium cellulovorans 743B | <a href=https://pubmed.ncbi.nlm.nih.gov/26020016/>26020016</a> Elucidation of the recognition mechanisms for hemicellulose and pectin in Clostridium cellulovorans using intracellular quantitative proteome analysis. AMB Express. 2015 May 23;5:29. doi: 10.1186/s13568-015-0115-6. eCollection 2015. |
2015 | degradation | 4 | 1 | GH95 |
| PUL0599 | liquid chromatography and mass spectrometry, differential gene expression | xylan | Clostridium cellulovorans | <a href=https://pubmed.ncbi.nlm.nih.gov/26020016/>26020016</a> Elucidation of the recognition mechanisms for hemicellulose and pectin in Clostridium cellulovorans using intracellular quantitative proteome analysis. AMB Express. 2015 May 23;5:29. doi: 10.1186/s13568-015-0115-6. eCollection 2015. |
2015 | degradation | 7 | 1 | GH43_11, CBM91 |
| PUL0600 | liquid chromatography and mass spectrometry, differential gene expression | galactomannan | Clostridium cellulovorans | <a href=https://pubmed.ncbi.nlm.nih.gov/26020016/>26020016</a> Elucidation of the recognition mechanisms for hemicellulose and pectin in Clostridium cellulovorans using intracellular quantitative proteome analysis. AMB Express. 2015 May 23;5:29. doi: 10.1186/s13568-015-0115-6. eCollection 2015. |
2015 | degradation | 12 | 3 | GH130_1, GH130_2, GH2 |
| PUL0601 | liquid chromatography and mass spectrometry, differential gene expression | pectin | Clostridium cellulovorans | <a href=https://pubmed.ncbi.nlm.nih.gov/26020016/>26020016</a> Elucidation of the recognition mechanisms for hemicellulose and pectin in Clostridium cellulovorans using intracellular quantitative proteome analysis. AMB Express. 2015 May 23;5:29. doi: 10.1186/s13568-015-0115-6. eCollection 2015. |
2015 | degradation | 15 | 3 | CE4, GH105, GH28 |
| PUL0607 | enzyme activity assay, clone and expression, liquid chromatography and mass spectrometry | agarose | Wenyingzhuangia fucanilytica strain CZ1127 | <a href=https://pubmed.ncbi.nlm.nih.gov/32520542/>32520542</a> Characterization of a Novel Porphyranase Accommodating Methyl-galactoses at Its Subsites. J Agric Food Chem. 2020 Jul 1;68(26):7032-7039. doi: 10.1021/acs.jafc.0c02404. Epub 2020 Jun 22. |
2020 Jul 1 | degradation | 22 | 8 | GH105, GH154, GH117, GH141, GH16_11, GH16_14, GH2, GH29 |
| PUL0608 | enzyme activity assay, clone and expression, liquid chromatography and mass spectrometry, thin-layer chromatography, MALDI-TOF/MS | human milk oligosaccharide | Roseburia hominis DSM 16839 | <a href=https://pubmed.ncbi.nlm.nih.gov/32620774/>32620774</a> Butyrate producing colonic Clostridiales metabolise human milk oligosaccharides and cross feed on mucin via conserved pathways. Nat Commun. 2020 Jul 3;11(1):3285. doi: 10.1038/s41467-020-17075-x. |
2020 Jul 3 | degradation | 9 | 2 | GH112, GH136 |
| PUL0609 | enzyme activity assay, clone and expression, liquid chromatography and mass spectrometry, thin-layer chromatography, MALDI-TOF/MS | human milk oligosaccharide | Roseburia inulinivorans DSM 16841 | <a href=https://pubmed.ncbi.nlm.nih.gov/32620774/>32620774</a> Butyrate producing colonic Clostridiales metabolise human milk oligosaccharides and cross feed on mucin via conserved pathways. Nat Commun. 2020 Jul 3;11(1):3285. doi: 10.1038/s41467-020-17075-x. |
2020 Jul 3 | degradation | 11 | 4 | GH112, GH136, CBM32, GH95 |
| PUL0611 | liquid chromatography and mass spectrometry | alpha-glucan | Winogradskyella sp. isolate Bin3 | <a href=https://pubmed.ncbi.nlm.nih.gov/32071270/>32071270</a> Metagenomic and Metaproteomic Insights into Photoautotrophic and Heterotrophic Interactions in a Synechococcus Culture. mBio. 2020 Feb 18;11(1):e03261-19. doi: 10.1128/mBio.03261-19. |
2020 Feb 18 | degradation | 14 | 7 | CE1, GH13_19, GH13_38, GH13_46, GH31, GH65, GH97 |
| PUL0612 | liquid chromatography and mass spectrometry | alpha-glucan | Muricauda sp. isolate Bin2 | <a href=https://pubmed.ncbi.nlm.nih.gov/32071270/>32071270</a> Metagenomic and Metaproteomic Insights into Photoautotrophic and Heterotrophic Interactions in a Synechococcus Culture. mBio. 2020 Feb 18;11(1):e03261-19. doi: 10.1128/mBio.03261-19. |
2020 Feb 18 | degradation | 11 | 2 | GH13_38, GH65 |
| PUL0662 | thin-layer chromatography, liquid chromatography and mass spectrometry, qPCR, clone and expression | beta-mannan | Phocaeicola dorei DSM 17855 | <a href=https://pubmed.ncbi.nlm.nih.gov/34339781/>34339781</a> BdPUL12 depolymerizes beta-mannan-like glycans into mannooligosaccharides and mannose, which serve as carbon sources for Bacteroides dorei and gut probiotics. Int J Biol Macromol. 2021 Sep 30;187:664-674. doi: 10.1016/j.ijbiomac.2021.07.172. Epub 2021 Jul 31. |
2021 Sep 30 | degradation | 8 | 4 | CE7, GH130_1, GH26, GH5_7 |
| PUL0673 | NMR, substrate binding assay, liquid chromatography and mass spectrometry | human milk oligosaccharide | Bifidobacterium pseudocatenulatum DSM20438 | <a href=https://pubmed.ncbi.nlm.nih.gov/34757822/>34757822</a> Fucosylated Human Milk Oligosaccharide Foraging within the Species Bifidobacterium pseudocatenulatum Is Driven by Glycosyl Hydrolase Content and Specificity. Appl Environ Microbiol. 2022 Jan 25;88(2):e0170721. doi: 10.1128/AEM.01707-21. Epub 2021 Nov 10. |
2022 Jan 25 | degradation | 8 | 1 | GH95 |
| PUL0686 | enzyme activity assay, liquid chromatography and mass spectrometry, substrate degradation assay, assimilation assay | hyaluronan | Granulicatella adiacens ATCC 49175 | <a href=https://pubmed.ncbi.nlm.nih.gov/35768476/>35768476</a> Enhanced propagation of Granulicatella adiacens from human oral microbiota by hyaluronan. Sci Rep. 2022 Jun 29;12(1):10948. doi: 10.1038/s41598-022-14857-9. |
2022 Jun 29 | degradation | 17 | 2 | CBM70, PL8_1, PL12_1 |
| PUL0710 | RNA-seq, growth assay, liquid chromatography and mass spectrometry, gene mutant, mice colonization with mutant | mucin | Akkermansia muciniphila ATCC BAA-835 | <a href=https://pubmed.ncbi.nlm.nih.gov/37337046/>37337046</a> A genetic system for Akkermansia muciniphila reveals a role for mucin foraging in gut colonization and host sterol biosynthesis gene expression. Nat Microbiol. 2023 Aug;8(8):1450-1467. doi: 10.1038/s41564-023-01407-w. Epub 2023 Jun 19. |
2023 Aug | degradation | 8 | 0 | NA |
| PUL0711 | RNA-seq, growth assay, liquid chromatography and mass spectrometry, gene mutant, mice colonization with mutant | mucin | Akkermansia muciniphila ATCC BAA-835 | <a href=https://pubmed.ncbi.nlm.nih.gov/37337046/>37337046</a> A genetic system for Akkermansia muciniphila reveals a role for mucin foraging in gut colonization and host sterol biosynthesis gene expression. Nat Microbiol. 2023 Aug;8(8):1450-1467. doi: 10.1038/s41564-023-01407-w. Epub 2023 Jun 19. |
2023 Aug | degradation | 5 | 0 | NA |
| PUL0726 | reducing-sugar assay, NMR, clone and expression, liquid chromatography and mass spectrometry, mass spectrometry | sulfosugar | Agrobacterium tumefaciens str. C58 | <a href=https://pubmed.ncbi.nlm.nih.gov/35074914/>35074914</a> Oxidative desulfurization pathway for complete catabolism of sulfoquinovose by bacteria. Proc Natl Acad Sci U S A. 2022 Jan 25;119(4):e2116022119. doi: 10.1073/pnas.2116022119. |
2022 Jan 25 | degradation | 9 | 1 | GH31_13 |
Copyright 2020 © YIN LAB, UNL. All rights reserved. Designed by Catie Ausland and Jinfang Zheng. Maintained by Yanbin Yin.