Browse dbCAN-PUL Entries

PULID Characterization Method(s) Substrate Organism Publication Publish Date Type Num Genes Num CAZymes CazyFamily
PUL0010 enzyme activity assay, liquid chromatography and mass spectrometry xylan Geobacillus thermodenitrificans <a href=https://pubmed.ncbi.nlm.nih.gov/28616644/>28616644</a>
Synergistic hydrolysis of xylan using novel xylanases, beta-xylosidases, and an alpha-L-arabinofuranosidase from Geobacillus thermodenitrificans NG80-2. Appl Microbiol Biotechnol. 2017 Aug;101(15):6023-6037. doi: 10.1007/s00253-017-8341-2. Epub 2017 Jun 14.
2017 Aug degradation 42 8 CE4, GH10, GH39, GH43_11, CBM91, GH51_1, GH52, GH67
PUL0199 enzyme activity assay, liquid chromatography and mass spectrometry alginate Saccharophagus degradans <a href=https://pubmed.ncbi.nlm.nih.gov/26458373/>26458373</a>
Putative Alginate Assimilation Process of the Marine Bacterium Saccharophagus degradans 2-40 Based on Quantitative Proteomic Analysis. Mar Biotechnol (NY). 2016 Feb;18(1):15-23. doi: 10.1007/s10126-015-9667-3. Epub 2015 Oct 12.
2016 Feb degradation 17 6 CBM16, CBM32, PL18, PL17_2, PL17, PL6, PL6, PL6_1, PL7_5
PUL0283 microarray, high-performance anion-exchange chromatography, liquid chromatography and mass spectrometry galactooligosaccharide Bifidobacterium breve <a href=https://pubmed.ncbi.nlm.nih.gov/23199239/>23199239</a>
Transcriptional and functional characterization of genetic elements involved in galacto-oligosaccharide utilization by Bifidobacterium breve UCC2003. Microb Biotechnol. 2013 Jan;6(1):67-79. doi: 10.1111/1751-7915.12011. Epub 2012 Dec 2.
2013 Jan degradation 6 2 GH42, GH53, CBM61
PUL0284 microarray, high-performance anion-exchange chromatography, liquid chromatography and mass spectrometry galactan Bifidobacterium breve <a href=https://pubmed.ncbi.nlm.nih.gov/23199239/>23199239</a>
Transcriptional and functional characterization of genetic elements involved in galacto-oligosaccharide utilization by Bifidobacterium breve UCC2003. Microb Biotechnol. 2013 Jan;6(1):67-79. doi: 10.1111/1751-7915.12011. Epub 2012 Dec 2.
2013 Jan degradation 3 1 GH2
PUL0285 microarray, high-performance anion-exchange chromatography, liquid chromatography and mass spectrometry galactooligosaccharide Bifidobacterium breve <a href=https://pubmed.ncbi.nlm.nih.gov/23199239/>23199239</a>
Transcriptional and functional characterization of genetic elements involved in galacto-oligosaccharide utilization by Bifidobacterium breve UCC2003. Microb Biotechnol. 2013 Jan;6(1):67-79. doi: 10.1111/1751-7915.12011. Epub 2012 Dec 2.
2013 Jan degradation 6 1 GH42
PUL0320 liquid chromatography and mass spectrometry, mass spectrometry, target decoy database analysis cellulose Caldicellulosiruptor bescii <a href=https://pubmed.ncbi.nlm.nih.gov/29475869/>29475869</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/29588665/>29588665</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/21227922/>21227922</a>
Genus-Wide Assessment of Lignocellulose Utilization in the Extremely Thermophilic Genus Caldicellulosiruptor by Genomic, Pangenomic, and Metagenomic Analyses. The diversity and specificity of the extracellular proteome in the cellulolytic bacterium Caldicellulosiruptor bescii is driven by the nature of the cellulosic growth substrate. Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725. Appl Environ Microbiol. 2018 Apr 16;84(9):e02694-17. doi: 10.1128/AEM.02694-17. Print 2018 May 1. Biotechnol Biofuels. 2018 Mar 23;11:80. doi: 10.1186/s13068-018-1076-1. eCollection 2018. Nucleic Acids Res. 2011 Apr;39(8):3240-54. doi: 10.1093/nar/gkq1281. Epub 2011 Jan 11.
2018 May 1,2018,2011 Apr degradation 19 10 CBM66, PL3_1, CBM66, PL9_1, GH10, CBM3, CBM3, GH48, GH5_8, CBM3, CBM3, CBM3, GH5_1, GH5_8, CBM3, CBM3, GH44, GH74, GH74, GH74, GH74, CBM3, CBM3, GH48, GH9, CBM3, CBM3, CBM3, GH48, GH9, CBM3, CBM3, CBM3, GH5_8, GT39, PL11, CBM3
PUL0322 liquid chromatography and mass spectrometry cellulose Caldicellulosiruptor danielii <a href=https://pubmed.ncbi.nlm.nih.gov/29475869/>29475869</a>
Genus-Wide Assessment of Lignocellulose Utilization in the Extremely Thermophilic Genus Caldicellulosiruptor by Genomic, Pangenomic, and Metagenomic Analyses. Appl Environ Microbiol. 2018 Apr 16;84(9):e02694-17. doi: 10.1128/AEM.02694-17. Print 2018 May 1.
2018 May 1 degradation 19 12 CBM22, CBM22, GH10, CBM3, CBM3, GH5_1, CBM66, PL3_1, CBM66, PL9_1, GH10, CBM3, GH12, GH48, GH5_8, CBM3, CBM3, GH44, GH74, GH74, GH74, GH74, CBM3, CBM3, GH48, GH9, CBM3, CBM3, CBM3, GH48, GH9, CBM3, CBM3, CBM3, GH5_8, GT39, PL11, CBM3
PUL0598 liquid chromatography and mass spectrometry, differential gene expression xylan Clostridium cellulovorans 743B <a href=https://pubmed.ncbi.nlm.nih.gov/26020016/>26020016</a>
Elucidation of the recognition mechanisms for hemicellulose and pectin in Clostridium cellulovorans using intracellular quantitative proteome analysis. AMB Express. 2015 May 23;5:29. doi: 10.1186/s13568-015-0115-6. eCollection 2015.
2015 degradation 4 1 GH95
PUL0599 liquid chromatography and mass spectrometry, differential gene expression xylan Clostridium cellulovorans <a href=https://pubmed.ncbi.nlm.nih.gov/26020016/>26020016</a>
Elucidation of the recognition mechanisms for hemicellulose and pectin in Clostridium cellulovorans using intracellular quantitative proteome analysis. AMB Express. 2015 May 23;5:29. doi: 10.1186/s13568-015-0115-6. eCollection 2015.
2015 degradation 7 1 GH43_11, CBM91
PUL0600 liquid chromatography and mass spectrometry, differential gene expression galactomannan Clostridium cellulovorans <a href=https://pubmed.ncbi.nlm.nih.gov/26020016/>26020016</a>
Elucidation of the recognition mechanisms for hemicellulose and pectin in Clostridium cellulovorans using intracellular quantitative proteome analysis. AMB Express. 2015 May 23;5:29. doi: 10.1186/s13568-015-0115-6. eCollection 2015.
2015 degradation 12 3 GH130_1, GH130_2, GH2
PUL0601 liquid chromatography and mass spectrometry, differential gene expression pectin Clostridium cellulovorans <a href=https://pubmed.ncbi.nlm.nih.gov/26020016/>26020016</a>
Elucidation of the recognition mechanisms for hemicellulose and pectin in Clostridium cellulovorans using intracellular quantitative proteome analysis. AMB Express. 2015 May 23;5:29. doi: 10.1186/s13568-015-0115-6. eCollection 2015.
2015 degradation 15 3 CE4, GH105, GH28
PUL0607 enzyme activity assay, clone and expression, liquid chromatography and mass spectrometry agarose Wenyingzhuangia fucanilytica strain CZ1127 <a href=https://pubmed.ncbi.nlm.nih.gov/32520542/>32520542</a>
Characterization of a Novel Porphyranase Accommodating Methyl-galactoses at Its Subsites. J Agric Food Chem. 2020 Jul 1;68(26):7032-7039. doi: 10.1021/acs.jafc.0c02404. Epub 2020 Jun 22.
2020 Jul 1 degradation 22 8 GH105, GH154, GH117, GH141, GH16_11, GH16_14, GH2, GH29
PUL0608 enzyme activity assay, clone and expression, liquid chromatography and mass spectrometry, thin-layer chromatography, MALDI-TOF/MS human milk oligosaccharide Roseburia hominis DSM 16839 <a href=https://pubmed.ncbi.nlm.nih.gov/32620774/>32620774</a>
Butyrate producing colonic Clostridiales metabolise human milk oligosaccharides and cross feed on mucin via conserved pathways. Nat Commun. 2020 Jul 3;11(1):3285. doi: 10.1038/s41467-020-17075-x.
2020 Jul 3 degradation 9 2 GH112, GH136
PUL0609 enzyme activity assay, clone and expression, liquid chromatography and mass spectrometry, thin-layer chromatography, MALDI-TOF/MS human milk oligosaccharide Roseburia inulinivorans DSM 16841 <a href=https://pubmed.ncbi.nlm.nih.gov/32620774/>32620774</a>
Butyrate producing colonic Clostridiales metabolise human milk oligosaccharides and cross feed on mucin via conserved pathways. Nat Commun. 2020 Jul 3;11(1):3285. doi: 10.1038/s41467-020-17075-x.
2020 Jul 3 degradation 11 4 GH112, GH136, CBM32, GH95
PUL0611 liquid chromatography and mass spectrometry alpha-glucan Winogradskyella sp. isolate Bin3 <a href=https://pubmed.ncbi.nlm.nih.gov/32071270/>32071270</a>
Metagenomic and Metaproteomic Insights into Photoautotrophic and Heterotrophic Interactions in a Synechococcus Culture. mBio. 2020 Feb 18;11(1):e03261-19. doi: 10.1128/mBio.03261-19.
2020 Feb 18 degradation 14 7 CE1, GH13_19, GH13_38, GH13_46, GH31, GH65, GH97
PUL0612 liquid chromatography and mass spectrometry alpha-glucan Muricauda sp. isolate Bin2 <a href=https://pubmed.ncbi.nlm.nih.gov/32071270/>32071270</a>
Metagenomic and Metaproteomic Insights into Photoautotrophic and Heterotrophic Interactions in a Synechococcus Culture. mBio. 2020 Feb 18;11(1):e03261-19. doi: 10.1128/mBio.03261-19.
2020 Feb 18 degradation 11 2 GH13_38, GH65
PUL0662 thin-layer chromatography, liquid chromatography and mass spectrometry, qPCR, clone and expression beta-mannan Phocaeicola dorei DSM 17855 <a href=https://pubmed.ncbi.nlm.nih.gov/34339781/>34339781</a>
BdPUL12 depolymerizes beta-mannan-like glycans into mannooligosaccharides and mannose, which serve as carbon sources for Bacteroides dorei and gut probiotics. Int J Biol Macromol. 2021 Sep 30;187:664-674. doi: 10.1016/j.ijbiomac.2021.07.172. Epub 2021 Jul 31.
2021 Sep 30 degradation 8 4 CE7, GH130_1, GH26, GH5_7
PUL0673 NMR, substrate binding assay, liquid chromatography and mass spectrometry human milk oligosaccharide Bifidobacterium pseudocatenulatum DSM20438 <a href=https://pubmed.ncbi.nlm.nih.gov/34757822/>34757822</a>
Fucosylated Human Milk Oligosaccharide Foraging within the Species Bifidobacterium pseudocatenulatum Is Driven by Glycosyl Hydrolase Content and Specificity. Appl Environ Microbiol. 2022 Jan 25;88(2):e0170721. doi: 10.1128/AEM.01707-21. Epub 2021 Nov 10.
2022 Jan 25 degradation 8 1 GH95
PUL0686 enzyme activity assay, liquid chromatography and mass spectrometry, substrate degradation assay, assimilation assay hyaluronan Granulicatella adiacens ATCC 49175 <a href=https://pubmed.ncbi.nlm.nih.gov/35768476/>35768476</a>
Enhanced propagation of Granulicatella adiacens from human oral microbiota by hyaluronan. Sci Rep. 2022 Jun 29;12(1):10948. doi: 10.1038/s41598-022-14857-9.
2022 Jun 29 degradation 17 2 CBM70, PL8_1, PL12_1
PUL0710 RNA-seq, growth assay, liquid chromatography and mass spectrometry, gene mutant, mice colonization with mutant mucin Akkermansia muciniphila ATCC BAA-835 <a href=https://pubmed.ncbi.nlm.nih.gov/37337046/>37337046</a>
A genetic system for Akkermansia muciniphila reveals a role for mucin foraging in gut colonization and host sterol biosynthesis gene expression. Nat Microbiol. 2023 Aug;8(8):1450-1467. doi: 10.1038/s41564-023-01407-w. Epub 2023 Jun 19.
2023 Aug degradation 8 0 NA
PUL0711 RNA-seq, growth assay, liquid chromatography and mass spectrometry, gene mutant, mice colonization with mutant mucin Akkermansia muciniphila ATCC BAA-835 <a href=https://pubmed.ncbi.nlm.nih.gov/37337046/>37337046</a>
A genetic system for Akkermansia muciniphila reveals a role for mucin foraging in gut colonization and host sterol biosynthesis gene expression. Nat Microbiol. 2023 Aug;8(8):1450-1467. doi: 10.1038/s41564-023-01407-w. Epub 2023 Jun 19.
2023 Aug degradation 5 0 NA
PUL0726 reducing-sugar assay, NMR, clone and expression, liquid chromatography and mass spectrometry, mass spectrometry sulfosugar Agrobacterium tumefaciens str. C58 <a href=https://pubmed.ncbi.nlm.nih.gov/35074914/>35074914</a>
Oxidative desulfurization pathway for complete catabolism of sulfoquinovose by bacteria. Proc Natl Acad Sci U S A. 2022 Jan 25;119(4):e2116022119. doi: 10.1073/pnas.2116022119.
2022 Jan 25 degradation 9 1 GH31_13