Browse dbCAN-PUL Entries

PULID Characterization Method(s) Substrate Organism Publication Publish Date Type Num Genes Num CAZymes CazyFamily
PUL0001 RNA-seq, substrate binding assay, enzyme activity assay, mass spectrometry beta-mannan Roseburia intestinalis <a href=https://pubmed.ncbi.nlm.nih.gov/30796211/>30796211</a>
The human gut Firmicute Roseburia intestinalis is a primary degrader of dietary beta-mannans. Nat Commun. 2019 Feb 22;10(1):905. doi: 10.1038/s41467-019-08812-y.
2019 Feb 22 degradation 15 9 CE17, CBM35inCE17, CE2, GH1, GH113, GH130_1, GH130_2, GH36
PUL0002 enzyme activity assay, Northern Blot beta-glucan Bacillus subtilis <a href=https://pubmed.ncbi.nlm.nih.gov/8606172/>8606172</a>
LicT, a Bacillus subtilis transcriptional antiterminator protein of the BglG family. J Bacteriol. 1996 Apr;178(7):1971-9. doi: 10.1128/jb.178.7.1971-1979.1996.
1996 Apr degradation 2 1 GH16_21
PUL0004 enzyme activity assay, substrate binding assay beta-glucan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/26827771/>26827771</a>
A novel metagenome-derived gene cluster from termite hindgut: Encoding phosphotransferase system components and high glucose tolerant glucosidase. Enzyme Microb Technol. 2016 Mar;84:24-31. doi: 10.1016/j.enzmictec.2015.12.005. Epub 2015 Dec 15.
2016 Mar degradation 2 1 GH1
PUL0005 enzyme activity assay, crystallization beta-glucan Listeria innocua <a href=https://pubmed.ncbi.nlm.nih.gov/26886583/>26886583</a>
Functional and Structural Analysis of a beta-Glucosidase Involved in beta-1,2-Glucan Metabolism in Listeria innocua. PLoS One. 2016 Feb 17;11(2):e0148870. doi: 10.1371/journal.pone.0148870. eCollection 2016.
2016 degradation 2 2 GH3, GH94
PUL0006 enzyme activity assay galactan Geobacillus stearothermophilus <a href=https://pubmed.ncbi.nlm.nih.gov/24637762/>24637762</a>
Purification, crystallization and preliminary crystallographic analysis of Gan1D, a GH1 6-phospho-beta-galactosidase from Geobacillus stearothermophilus T1. Acta Crystallogr F Struct Biol Commun. 2014 Feb;70(Pt 2):225-31. doi: 10.1107/S2053230X13034778. Epub 2014 Jan 21.
2014 Feb degradation 10 1 GH1
PUL0008 enzyme activity assay, qPCR, thin-layer chromatography, substrate binding assay fructan Bacteroides thetaiotaomicron <a href=https://pubmed.ncbi.nlm.nih.gov/28103254/>28103254</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/25841008/>25841008</a>
A Highly Active Endo-Levanase BT1760 of a Dominant Mammalian Gut Commensal Bacteroides thetaiotaomicron Cleaves Not Only Various Bacterial Levans, but Also Levan of Timothy Grass. Differential Metabolism of Exopolysaccharides from Probiotic Lactobacilli by the Human Gut Symbiont Bacteroides thetaiotaomicron. PLoS One. 2017 Jan 19;12(1):e0169989. doi: 10.1371/journal.pone.0169989. eCollection 2017. Appl Environ Microbiol. 2015 Jun 15;81(12):3973-83. doi: 10.1128/AEM.00149-15. Epub 2015 Apr 3.
2017,2015 Jun 15 degradation 12 3 GH32
PUL0009 enzyme activity assay, immunoblotting, ATPase assay glycosaminoglycan Streptobacillus moniliformis <a href=https://pubmed.ncbi.nlm.nih.gov/28432302/>28432302</a>
A bacterial ABC transporter enables import of mammalian host glycosaminoglycans. Sci Rep. 2017 Apr 21;7(1):1069. doi: 10.1038/s41598-017-00917-y.
2017 Apr 21 degradation 15 4 GH88, PL12_1, PL8
PUL0010 enzyme activity assay, liquid chromatography and mass spectrometry xylan Geobacillus thermodenitrificans <a href=https://pubmed.ncbi.nlm.nih.gov/28616644/>28616644</a>
Synergistic hydrolysis of xylan using novel xylanases, beta-xylosidases, and an alpha-L-arabinofuranosidase from Geobacillus thermodenitrificans NG80-2. Appl Microbiol Biotechnol. 2017 Aug;101(15):6023-6037. doi: 10.1007/s00253-017-8341-2. Epub 2017 Jun 14.
2017 Aug degradation 42 8 CE4, GH10, GH39, GH43_11, CBM91, GH51_1, GH52, GH67
PUL0012 enzyme activity assay chitin Vibrio cholerae <a href=https://pubmed.ncbi.nlm.nih.gov/28683122/>28683122</a>
The nucleoid occlusion protein SlmA is a direct transcriptional activator of chitobiose utilization in Vibrio cholerae. PLoS Genet. 2017 Jul 6;13(7):e1006877. doi: 10.1371/journal.pgen.1006877. eCollection 2017 Jul.
2017 Jul degradation 11 3 GH20, GH9, GH94
PUL0018 rapid plate method growth assay, gene deletion mutant and growth assay, RT-PCR, enzyme activity assay glycosaminoglycan Streptococcus pneumoniae <a href=https://pubmed.ncbi.nlm.nih.gov/22311922/>22311922</a>
Streptococcus pneumoniae can utilize multiple sources of hyaluronic acid for growth. Infect Immun. 2012 Apr;80(4):1390-8. doi: 10.1128/IAI.05756-11. Epub 2012 Feb 6.
2012 Apr degradation 13 3 CBM70, PL8_1, GH88, PL12_1
PUL0019 enzyme activity assay, Northern Blot beta-glucan Bacillus subtilis <a href=https://pubmed.ncbi.nlm.nih.gov/8990303/>8990303</a>
Identification and characterization of a new beta-glucoside utilization system in Bacillus subtilis. J Bacteriol. 1997 Jan;179(2):496-506. doi: 10.1128/jb.179.2.496-506.1997.
1997 Jan degradation 6 1 GH4
PUL0022 RT-PCR, gene deletion mutant and growth assay, enzyme activity assay cellobiose Bacillus coagulans <a href=https://pubmed.ncbi.nlm.nih.gov/30519284/>30519284</a>
Simultaneous consumption of cellobiose and xylose by Bacillus coagulans to circumvent glucose repression and identification of its cellobiose-assimilating operons. Biotechnol Biofuels. 2018 Dec 1;11:320. doi: 10.1186/s13068-018-1323-5. eCollection 2018.
2018 degradation 6 1 GH1
PUL0023 RT-PCR, gene deletion mutant and growth assay, enzyme activity assay cellobiose Bacillus coagulans <a href=https://pubmed.ncbi.nlm.nih.gov/30519284/>30519284</a>
Simultaneous consumption of cellobiose and xylose by Bacillus coagulans to circumvent glucose repression and identification of its cellobiose-assimilating operons. Biotechnol Biofuels. 2018 Dec 1;11:320. doi: 10.1186/s13068-018-1323-5. eCollection 2018.
2018 degradation 5 1 GH1
PUL0024 enzyme activity assay, qPCR, carbohydrate binding assay fructan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/31915220/>31915220</a>
Harvesting of Prebiotic Fructooligosaccharides by Nonbeneficial Human Gut Bacteria. mSphere. 2020 Jan 8;5(1):e00771-19. doi: 10.1128/mSphere.00771-19.
2020 Jan 8 degradation 12 1 GH32
PUL0026 qPCR, Western Blot, RNA-seq, enzyme activity assay ribose Bacteroides thetaiotaomicron <a href=https://pubmed.ncbi.nlm.nih.gov/31901520/>31901520</a>
A Ribose-Scavenging System Confers Colonization Fitness on the Human Gut Symbiont Bacteroides thetaiotaomicron in a Diet-Specific Manner. Cell Host Microbe. 2020 Jan 8;27(1):79-92.e9. doi: 10.1016/j.chom.2019.11.009. Epub 2019 Dec 31.
2020 Jan 8 degradation 8 1 GH35
PUL0028 microarray, qPCR, enzyme activity assay mucin [Ruminococcus] gnavus <a href=https://pubmed.ncbi.nlm.nih.gov/24204617/>24204617</a>
Utilisation of mucin glycans by the human gut symbiont Ruminococcus gnavus is strain-dependent. PLoS One. 2013 Oct 25;8(10):e76341. doi: 10.1371/journal.pone.0076341. eCollection 2013.
2013 degradation 14 4 CBM40, GH33, GH1, GH140, GH177
PUL0029 enzyme activity assay arabinogalactan Bifidobacterium longum <a href=https://pubmed.ncbi.nlm.nih.gov/30564851/>30564851</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/30635377/>30635377</a>
Degradative enzymes for type II arabinogalactan side chains in Bifidobacterium longum subsp. longum. Two Novel alpha-l-Arabinofuranosidases from Bifidobacterium longum subsp. longum Belonging to Glycoside Hydrolase Family 43 Cooperatively Degrade Arabinan. Appl Microbiol Biotechnol. 2019 Feb;103(3):1299-1310. doi: 10.1007/s00253-018-9566-4. Epub 2018 Dec 18. Appl Environ Microbiol. 2019 Mar 6;85(6):e02582-18. doi: 10.1128/AEM.02582-18. Print 2019 Mar 15.
2019 Feb,2019 Mar 15 degradation 24 8 GH146, GH30_5, GH43_22, GH43_22, GH43_26, GH43_22, GH43_34, GH43_24, GH43_27
PUL0030 isothermal calorimetric titration, gene deletion mutant and growth assay, enzyme activity assay galactomannan Bacillus sp. N16-5 <a href=https://pubmed.ncbi.nlm.nih.gov/26978267/>26978267</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/30351049/>30351049</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/29360976/>29360976</a>
A Novel Manno-Oligosaccharide Binding Protein Identified in Alkaliphilic Bacillus sp. N16-5 Is Involved in Mannan Utilization. Galactomannan Degrading Enzymes from the Mannan Utilization Gene Cluster of Alkaliphilic Bacillus sp. N16-5 and Their Synergy on Galactomannan Degradation. Transcriptional regulation of the mannan utilization genes in the alkaliphilic Bacillus sp. N16-5. PLoS One. 2016 Mar 15;11(3):e0150059. doi: 10.1371/journal.pone.0150059. eCollection 2016. J Agric Food Chem. 2018 Oct 24;66(42):11055-11063. doi: 10.1021/acs.jafc.8b03878. Epub 2018 Oct 15. FEMS Microbiol Lett. 2018 Feb 1;365(4). doi: 10.1093/femsle/fnx280.
2016,2018 Oct 24,2018 Feb 1 degradation 12 6 CE7, GH130_1, GH130_2, GH27
PUL0034 enzyme activity assay pectin Dickeya chrysanthemi <a href=https://pubmed.ncbi.nlm.nih.gov/12730169/>12730169</a>
PaeX, a second pectin acetylesterase of Erwinia chrysanthemi 3937. J Bacteriol. 2003 May;185(10):3091-100. doi: 10.1128/JB.185.10.3091-3100.2003.
2003 May degradation 2 0 NA
PUL0035 enzyme activity assay, Assay of oligogalacturonide uptake in E. coli pectin Dickeya chrysanthemi <a href=https://pubmed.ncbi.nlm.nih.gov/11555291/>11555291</a>
Identification of TogMNAB, an ABC transporter which mediates the uptake of pectic oligomers in Erwinia chrysanthemi 3937. Mol Microbiol. 2001 Sep;41(5):1113-23. doi: 10.1046/j.1365-2958.2001.02564.x.
2001 Sep degradation 5 1 PL2_2
PUL0037 enzyme activity assay raffinose Streptococcus pneumoniae <a href=https://pubmed.ncbi.nlm.nih.gov/31591266/>31591266</a>
Molecular analysis of an enigmatic Streptococcus pneumoniae virulence factor: The raffinose-family oligosaccharide utilization system. J Biol Chem. 2019 Nov 15;294(46):17197-17208. doi: 10.1074/jbc.RA119.010280. Epub 2019 Oct 7.
2019 Nov 15 degradation 8 2 GH13_18, GH36
PUL0038 enzyme activity assay, Southern Blot melibiose Thermus brockianus <a href=https://pubmed.ncbi.nlm.nih.gov/10741834/>10741834</a>
The structure of the alpha-galactosidase gene loci in Thermus brockianus ITI360 and Thermus thermophilus TH125. Extremophiles. 2000 Feb;4(1):23-33. doi: 10.1007/s007920050004.
2000 Feb degradation 8 2 GH36, GH42
PUL0039 enzyme activity assay, Southern Blot melibiose Thermus thermophilus <a href=https://pubmed.ncbi.nlm.nih.gov/10741834/>10741834</a>
The structure of the alpha-galactosidase gene loci in Thermus brockianus ITI360 and Thermus thermophilus TH125. Extremophiles. 2000 Feb;4(1):23-33. doi: 10.1007/s007920050004.
2000 Feb degradation 3 1 GH36
PUL0040 Northern Blot, enzyme activity assay cellulose Ruminiclostridium cellulolyticum <a href=https://pubmed.ncbi.nlm.nih.gov/12896991/>12896991</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/1398087/>1398087</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/11844767 />11844767 </a>
A rhamnogalacturonan lyase in the Clostridium cellulolyticum cellulosome. Sequence analysis of a gene cluster encoding cellulases from Clostridium cellulolyticum. Cel9M, a new family 9 cellulase of the Clostridium cellulolyticum cellulosome. J Bacteriol. 2003 Aug;185(16):4727-33. doi: 10.1128/JB.185.16.4727-4733.2003. Gene. 1992 Sep 21;119(1):17-28. doi: 10.1016/0378-1119(92)90062-t. J Bacteriol. 2002 Mar;184(5):1378-84. doi: 10.1128/JB.184.5.1378-1384.2002.
2003 Aug,1992 Sep 21,2002 Mar degradation 6 6 GH5_1, GH5_17, GH9, GH9, CBM3, PL11
PUL0041 Southern Blot, enzyme activity assay cellobiose Klebsiella oxytoca <a href=https://pubmed.ncbi.nlm.nih.gov/9023916/>9023916</a>
Cloning of cellobiose phosphoenolpyruvate-dependent phosphotransferase genes: functional expression in recombinant Escherichia coli and identification of a putative binding region for disaccharides. Appl Environ Microbiol. 1997 Feb;63(2):355-63. doi: 10.1128/aem.63.2.355-363.1997.
1997 Feb degradation 3 1 GH1
PUL0044 qRT-PCR, enzyme activity assay arabinoxylan Bacteroides ovatus <a href=https://pubmed.ncbi.nlm.nih.gov/26112186/>26112186</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/32266006/>32266006</a>
Glycan complexity dictates microbial resource allocation in the large intestine. Multimodular fused acetyl-feruloyl esterases from soil and gut Bacteroidetes improve xylanase depolymerization of recalcitrant biomass. Nat Commun. 2015 Jun 26;6:7481. doi: 10.1038/ncomms8481. Biotechnol Biofuels. 2020 Mar 31;13:60. doi: 10.1186/s13068-020-01698-9. eCollection 2020.
2015 Jun 26,2020 degradation 34 17 CE20, CE20, CE6, CE1, GH10, GH115, GH3, GH30, GH30_8, GH31_4, GH43_10, CBM91, GH43_12, CBM91, GH43_29, CBM6, GH95, GH97, GH98, CBM35
PUL0058 enzyme activity assay glycogen Bacillus subtilis <a href=https://pubmed.ncbi.nlm.nih.gov/8145641/>8145641</a>
Glycogen in Bacillus subtilis: molecular characterization of an operon encoding enzymes involved in glycogen biosynthesis and degradation. Mol Microbiol. 1994 Jan;11(1):203-18. doi: 10.1111/j.1365-2958.1994.tb00301.x.
1994 Jan biosynthesis 5 3 CBM48, GH13_9, GT35, GT5
PUL0063 bicinchoninic acid (BCA) reducing-sugar assay, enzyme product analysis, affinity gel electrophoresis, isothermal titration calorimetry (ITC) xyloglucan Bacteroides ovatus <a href=https://pubmed.ncbi.nlm.nih.gov/31420336/>31420336</a>
Adaptation of Syntenic Xyloglucan Utilization Loci of Human Gut Bacteroidetes to Polysaccharide Side Chain Diversity. Appl Environ Microbiol. 2019 Oct 1;85(20):e01491-19. doi: 10.1128/AEM.01491-19. Print 2019 Oct 15.
2019 Oct 15 degradation 16 8 GH2, GH3, GH31_4, GH43_12, CBM91, GH5_4, GH9
PUL0064 bicinchoninic acid (BCA) reducing-sugar assay, enzyme product analysis, affinity gel electrophoresis, isothermal titration calorimetry (ITC) xyloglucan Bacteroides cellulosilyticus <a href=https://pubmed.ncbi.nlm.nih.gov/31420336/>31420336</a>
Adaptation of Syntenic Xyloglucan Utilization Loci of Human Gut Bacteroidetes to Polysaccharide Side Chain Diversity. Appl Environ Microbiol. 2019 Oct 1;85(20):e01491-19. doi: 10.1128/AEM.01491-19. Print 2019 Oct 15.
2019 Oct 15 degradation 12 4 GH2, GH3, GH31_4, GH5_4
PUL0065 bicinchoninic acid (BCA) reducing-sugar assay, enzyme product analysis, affinity gel electrophoresis, isothermal titration calorimetry (ITC) xyloglucan Bacteroides uniformis <a href=https://pubmed.ncbi.nlm.nih.gov/31420336/>31420336</a>
Adaptation of Syntenic Xyloglucan Utilization Loci of Human Gut Bacteroidetes to Polysaccharide Side Chain Diversity. Appl Environ Microbiol. 2019 Oct 1;85(20):e01491-19. doi: 10.1128/AEM.01491-19. Print 2019 Oct 15.
2019 Oct 15 degradation 13 6 GH2, GH3, GH31_4, GH43_12, CBM91, GH5_4, GH95
PUL0066 bicinchoninic acid (BCA) reducing-sugar assay, enzyme product analysis, affinity gel electrophoresis, isothermal titration calorimetry (ITC) xyloglucan Bacteroides fluxus <a href=https://pubmed.ncbi.nlm.nih.gov/31420336/>31420336</a>
Adaptation of Syntenic Xyloglucan Utilization Loci of Human Gut Bacteroidetes to Polysaccharide Side Chain Diversity. Appl Environ Microbiol. 2019 Oct 1;85(20):e01491-19. doi: 10.1128/AEM.01491-19. Print 2019 Oct 15.
2019 Oct 15 degradation 13 6 GH2, GH3, GH31_4, GH43_12, CBM91, GH5_4, GH95
PUL0067 bicinchoninic acid (BCA) reducing-sugar assay, enzyme product analysis, affinity gel electrophoresis, isothermal titration calorimetry (ITC) xyloglucan Dysgonomonas gadei <a href=https://pubmed.ncbi.nlm.nih.gov/31420336/>31420336</a>
Adaptation of Syntenic Xyloglucan Utilization Loci of Human Gut Bacteroidetes to Polysaccharide Side Chain Diversity. Appl Environ Microbiol. 2019 Oct 1;85(20):e01491-19. doi: 10.1128/AEM.01491-19. Print 2019 Oct 15.
2019 Oct 15 degradation 11 6 GH2, GH3, GH31_4, GH43_12, CBM91, GH5_4, GH95
PUL0068 enzyme activity assay, electrophoretic mobility shift assay raffinose Escherichia coli <a href=https://pubmed.ncbi.nlm.nih.gov/8277949/>8277949</a>
Role of two operators in regulating the plasmid-borne raf operon of Escherichia coli. Mol Gen Genet. 1994 Jan;242(1):90-9. doi: 10.1007/BF00277352.
1994 Jan degradation 4 2 GH32, GH36
PUL0078 enzyme activity assay xylan Caldicellulosiruptor sp. Rt8B.4 <a href=https://pubmed.ncbi.nlm.nih.gov/8920183/>8920183</a>
Cloning, sequencing and overexpression in Escherichia coli of a xylanase gene, xynA from the thermophilic bacterium Rt8B.4 genus Caldicellulosiruptor. Appl Microbiol Biotechnol. 1996 Mar;45(1-2):86-93. doi: 10.1007/s002530050653.
1996 Mar degradation 6 1 CBM22, CBM22, GH10
PUL0082 electrophoretic mobility shift assay, enzyme activity assay melibiose Bacillus subtilis <a href=https://pubmed.ncbi.nlm.nih.gov/31138628/>31138628</a>
The melREDCA Operon Encodes a Utilization System for the Raffinose Family of Oligosaccharides in Bacillus subtilis. J Bacteriol. 2019 Jul 10;201(15):e00109-19. doi: 10.1128/JB.00109-19. Print 2019 Aug 1.
2019 Aug 1 degradation 6 2 CE19, GH4
PUL0083 label-free quantitative proteomics, functional enrichment analysis, enzyme activity assay cellulose Ruminiclostridium papyrosolvens <a href=https://pubmed.ncbi.nlm.nih.gov/31338125/>31338125</a>
Secretomic analyses of Ruminiclostridium papyrosolvens reveal its enzymatic basis for lignocellulose degradation. Biotechnol Biofuels. 2019 Jul 15;12:183. doi: 10.1186/s13068-019-1522-8. eCollection 2019.
2019 degradation 12 11 CBM3, cohesin, cohesin, cohesin, cohesin, cohesin, cohesin, CBM4, GH9, GH48, GH5_1, GH5_17, GH5_7, GH8, GH9, GH9, CBM3
PUL0084 label-free quantitative proteomics, functional enrichment analysis, enzyme activity assay cellulose Ruminiclostridium papyrosolvens <a href=https://pubmed.ncbi.nlm.nih.gov/31338125/>31338125</a>
Secretomic analyses of Ruminiclostridium papyrosolvens reveal its enzymatic basis for lignocellulose degradation. Biotechnol Biofuels. 2019 Jul 15;12:183. doi: 10.1186/s13068-019-1522-8. eCollection 2019.
2019 degradation 12 12 CE1, CBM6, GH10, CBM6, GH27, CBM6, GH30_8, CBM6, GH43_10, CBM91, CBM6, GH43_29, CBM6, GH59, CBM6, GH62, CBM6, GH62, CBM6, CE6, GH95, CBM32
PUL0085 label-free quantitative proteomics, functional enrichment analysis, enzyme activity assay beta-glucan Ruminiclostridium papyrosolvens <a href=https://pubmed.ncbi.nlm.nih.gov/31338125/>31338125</a>
Secretomic analyses of Ruminiclostridium papyrosolvens reveal its enzymatic basis for lignocellulose degradation. Biotechnol Biofuels. 2019 Jul 15;12:183. doi: 10.1186/s13068-019-1522-8. eCollection 2019.
2019 degradation 3 3 CBM35, GH26, GH9
PUL0086 label-free quantitative proteomics, functional enrichment analysis, enzyme activity assay pectin Ruminiclostridium papyrosolvens <a href=https://pubmed.ncbi.nlm.nih.gov/31338125/>31338125</a>
Secretomic analyses of Ruminiclostridium papyrosolvens reveal its enzymatic basis for lignocellulose degradation. Biotechnol Biofuels. 2019 Jul 15;12:183. doi: 10.1186/s13068-019-1522-8. eCollection 2019.
2019 degradation 3 3 CE8, PL10_1, PL11
PUL0087 label-free quantitative proteomics, functional enrichment analysis, enzyme activity assay cellulose Ruminiclostridium papyrosolvens <a href=https://pubmed.ncbi.nlm.nih.gov/31338125/>31338125</a>
Secretomic analyses of Ruminiclostridium papyrosolvens reveal its enzymatic basis for lignocellulose degradation. Biotechnol Biofuels. 2019 Jul 15;12:183. doi: 10.1186/s13068-019-1522-8. eCollection 2019.
2019 degradation 2 2 GH9, CBM3, CBM3
PUL0089 label-free quantitative proteomics, functional enrichment analysis, enzyme activity assay cellulose Ruminiclostridium papyrosolvens <a href=https://pubmed.ncbi.nlm.nih.gov/31338125/>31338125</a>
Secretomic analyses of Ruminiclostridium papyrosolvens reveal its enzymatic basis for lignocellulose degradation. Biotechnol Biofuels. 2019 Jul 15;12:183. doi: 10.1186/s13068-019-1522-8. eCollection 2019.
2019 degradation 2 1 GH5_4
PUL0099 RNA-seq, substrate binding assay, enzyme activity assay, mass spectrometry beta-mannan Roseburia intestinalis <a href=https://pubmed.ncbi.nlm.nih.gov/30796211/>30796211</a>
The human gut Firmicute Roseburia intestinalis is a primary degrader of dietary beta-mannans. Nat Commun. 2019 Feb 22;10(1):905. doi: 10.1038/s41467-019-08812-y.
2019 Feb 22 degradation 3 3 CBM27, GH26, CBM23, GH3
PUL0111 enzyme activity assay, Northern Blot, transport assay melibiose Escherichia coli <a href=https://pubmed.ncbi.nlm.nih.gov/9642246/>9642246</a>
Conversion of temperature-sensitive to -resistant gene expression due to mutations in the promoter region of the melibiose operon in Escherichia coli. J Biol Chem. 1998 Jul 3;273(27):16860-4. doi: 10.1074/jbc.273.27.16860.
1998 Jul 3 degradation 3 1 GH4
PUL0114 recombinant protein expression, enzyme activity assay arabinan Ruminiclostridium cellulolyticum <a href=https://pubmed.ncbi.nlm.nih.gov/31198441/>31198441</a>
The xyl-doc gene cluster of Ruminiclostridium cellulolyticum encodes GH43- and GH62-alpha-l-arabinofuranosidases with complementary modes of action. Biotechnol Biofuels. 2019 Jun 10;12:144. doi: 10.1186/s13068-019-1483-y. eCollection 2019.
2019 degradation 14 14 CE1, CBM6, GH10, CBM6, GH146, CBM22, GH27, CBM6, GH2, CBM6, GH30_8, CBM6, GH43_10, CBM91, CBM6, GH43_16, CBM6, GH43_29, CBM6, GH59, CBM6, GH62, CBM6, GH62, CBM6, CE6, GH95, CBM32, CBM6
PUL0117 expression of recombinant proteins, RNA-seq, differential gene expression, enzyme specificity assay, enzyme activity assay host glycan Bacteroides thetaiotaomicron <a href=https://pubmed.ncbi.nlm.nih.gov/31160824/>31160824</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/23943617/>23943617</a>
Complex N-glycan breakdown by gut Bacteroides involves an extensive enzymatic apparatus encoded by multiple co-regulated genetic loci. Discovery of beta-1,4-D-mannosyl-N-acetyl-D-glucosamine phosphorylase involved in the metabolism of N-glycans. Nat Microbiol. 2019 Sep;4(9):1571-1581. doi: 10.1038/s41564-019-0466-x. Epub 2019 Jun 3. J Biol Chem. 2013 Sep 20;288(38):27366-27374. doi: 10.1074/jbc.M113.469080. Epub 2013 Aug 13.
2019 Sep,2013 Sep 20 degradation 22 7 GH130_2, GH163, GH18, GH20, GH92
PUL0118 qRT-PCR, affinity gel electrophoresis, isothermal titration calorimetry (ITC) beta-glucan Bacteroides uniformis <a href=https://pubmed.ncbi.nlm.nih.gov/32265336/>32265336</a>
Synergy between Cell Surface Glycosidases and Glycan-Binding Proteins Dictates the Utilization of Specific Beta(1,3)-Glucans by Human Gut Bacteroides. mBio. 2020 Apr 7;11(2):e00095-20. doi: 10.1128/mBio.00095-20.
2020 Apr 7 degradation 7 3 GH158, GH16_3, GH3
PUL0122 enzyme activity assay alpha-galactan Thermotoga maritima <a href=https://pubmed.ncbi.nlm.nih.gov/9741105/>9741105</a>
Properties of an alpha-galactosidase, and structure of its gene galA, within an alpha-and beta-galactoside utilization gene cluster of the hyperthermophilic bacterium Thermotoga maritima. Syst Appl Microbiol. 1998 Mar;21(1):1-11. doi: 10.1016/s0723-2020(98)80002-7.
1998 Mar degradation 6 3 GH2, GH36, GH42
PUL0129 enzyme activity assay beta-mannan gut metagenome <a href=https://pubmed.ncbi.nlm.nih.gov/30356154/>30356154</a>
Interspecies cross-feeding orchestrates carbon degradation in the rumen ecosystem. Nat Microbiol. 2018 Nov;3(11):1274-1284. doi: 10.1038/s41564-018-0225-4. Epub 2018 Oct 24.
2018 Nov degradation 12 6 CE7, GH130_1, GH26, GH5_4
PUL0132 enzyme activity assay, microarray beta-glucan Zobellia galactanivorans <a href=https://pubmed.ncbi.nlm.nih.gov/30341165/>30341165</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/28983288/>28983288</a>
The laterally acquired GH5 ZgEngA(GH5_4) from the marine bacterium Zobellia galactanivorans is dedicated to hemicellulose hydrolysis. Gene Expression Analysis of Zobellia galactanivorans during the Degradation of Algal Polysaccharides Reveals both Substrate-Specific and Shared Transcriptome-Wide Responses. Biochem J. 2018 Nov 28;475(22):3609-3628. doi: 10.1042/BCJ20180486. Front Microbiol. 2017 Sep 21;8:1808. doi: 10.3389/fmicb.2017.01808. eCollection 2017.
2018 Nov 28,2017 degradation 8 2 CBM4, GH5_4
PUL0135 enzyme activity assay, carbohydrate binding assay pectin Pseudoalteromonas sp. <a href=https://pubmed.ncbi.nlm.nih.gov/30341080/>30341080</a>
Biochemical Reconstruction of a Metabolic Pathway from a Marine Bacterium Reveals Its Mechanism of Pectin Depolymerization. Appl Environ Microbiol. 2018 Dec 13;85(1):e02114-18. doi: 10.1128/AEM.02114-18. Print 2019 Jan 1.
2019 Jan 1 degradation 21 7 CE12, CE8, GH105, GH28, GH43_10, CBM91, PL1_2
PUL0144 enzyme activity assay, Western Blot chitin Thermococcus kodakarensis <a href=https://pubmed.ncbi.nlm.nih.gov/16199574/>16199574</a>
Characterization of a novel glucosamine-6-phosphate deaminase from a hyperthermophilic archaeon. J Bacteriol. 2005 Oct;187(20):7038-44. doi: 10.1128/JB.187.20.7038-7044.2005.
2005 Oct degradation 12 4 CE14, GH1, GH18, GH35
PUL0155 enzyme activity assay alginate Agrobacterium fabrum <a href=https://pubmed.ncbi.nlm.nih.gov/16545947/>16545947</a>
A biosystem for alginate metabolism in Agrobacterium tumefaciens strain C58: molecular identification of Atu3025 as an exotype family PL-15 alginate lyase. Res Microbiol. 2006 Sep;157(7):642-9. doi: 10.1016/j.resmic.2006.02.006. Epub 2006 Mar 2.
2006 Sep degradation 8 1 PL15_1
PUL0166 enzyme activity assay, RT-PCR starch Bacteroides fragilis <a href=https://pubmed.ncbi.nlm.nih.gov/16788175/>16788175</a>
Characterization of the primary starch utilization operon in the obligate anaerobe Bacteroides fragilis: Regulation by carbon source and oxygen. J Bacteriol. 2006 Jul;188(13):4663-72. doi: 10.1128/JB.00125-06.
2006 Jul degradation 5 1 GH13_10
PUL0169 enzyme activity assay, qRT-PCR arabinan Xanthomonas euvesicatoria <a href=https://pubmed.ncbi.nlm.nih.gov/30092047/>30092047</a>
Functional characterization of unique enzymes in Xanthomonas euvesicatoria related to degradation of arabinofurano-oligosaccharides on hydroxyproline-rich glycoproteins. PLoS One. 2018 Aug 9;13(8):e0201982. doi: 10.1371/journal.pone.0201982. eCollection 2018.
2018 degradation 9 3 GH121, GH146, GH43_29
PUL0174 RT-PCR, enzyme activity assay, enzymatic product analysis starch Kribbella flavida <a href=https://pubmed.ncbi.nlm.nih.gov/27302067/>27302067</a>
Two Novel Glycoside Hydrolases Responsible for the Catabolism of Cyclobis-(1-->6)-alpha-nigerosyl. J Biol Chem. 2016 Aug 5;291(32):16438-47. doi: 10.1074/jbc.M116.727305. Epub 2016 Jun 14.
2016 Aug 5 degradation 3 2 GH31_12, CBM20, GH31_7, CBM35
PUL0175 enzyme activity assay galactomannan Cellvibrio mixtus <a href=https://pubmed.ncbi.nlm.nih.gov/16842369/>16842369</a>
Galactomannan hydrolysis and mannose metabolism in Cellvibrio mixtus. FEMS Microbiol Lett. 2006 Aug;261(1):123-32. doi: 10.1111/j.1574-6968.2006.00342.x.
2006 Aug degradation 4 3 GH130_1, GH27, GH5_7
PUL0176 RT-PCR, enzyme activity assay, enzymatic product analysis starch Kribbella flavida <a href=https://pubmed.ncbi.nlm.nih.gov/27302067/>27302067</a>
Two Novel Glycoside Hydrolases Responsible for the Catabolism of Cyclobis-(1-->6)-alpha-nigerosyl. J Biol Chem. 2016 Aug 5;291(32):16438-47. doi: 10.1074/jbc.M116.727305. Epub 2016 Jun 14.
2016 Aug 5 degradation 6 2 GH15, GH31_7
PUL0178 enzyme activity assay, enzyme specificity assay, substrate specificity assay galactomannan Bacteroides ovatus <a href=https://pubmed.ncbi.nlm.nih.gov/27288925/>27288925</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/22205877/>22205877</a>
A beta-mannan utilization locus in Bacteroides ovatus involves a GH36 alpha-galactosidase active on galactomannans. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. FEBS Lett. 2016 Jul;590(14):2106-18. doi: 10.1002/1873-3468.12250. Epub 2016 Jun 28. PLoS Biol. 2011 Dec;9(12):e1001221. doi: 10.1371/journal.pbio.1001221. Epub 2011 Dec 20.
2016 Jul,2011 Dec degradation 14 4 GH130_1, GH26, GH36
PUL0179 enzyme activity assay, enzyme specificity assay, substrate specificity assay galactomannan Bacteroides ovatus <a href=https://pubmed.ncbi.nlm.nih.gov/27288925/>27288925</a>
A beta-mannan utilization locus in Bacteroides ovatus involves a GH36 alpha-galactosidase active on galactomannans. FEBS Lett. 2016 Jul;590(14):2106-18. doi: 10.1002/1873-3468.12250. Epub 2016 Jun 28.
2016 Jul degradation 15 4 CE7, GH130_1, GH26
PUL0180 enzyme activity assay galactomannan Bacteroides fragilis <a href=https://pubmed.ncbi.nlm.nih.gov/27288925/>27288925</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/21539815/>21539815</a>
A beta-mannan utilization locus in Bacteroides ovatus involves a GH36 alpha-galactosidase active on galactomannans. New microbial mannan catabolic pathway that involves a novel mannosylglucose phosphorylase. FEBS Lett. 2016 Jul;590(14):2106-18. doi: 10.1002/1873-3468.12250. Epub 2016 Jun 28. Biochem Biophys Res Commun. 2011 May 20;408(4):701-6. doi: 10.1016/j.bbrc.2011.04.095. Epub 2011 Apr 24.
2016 Jul,2011 May 20 degradation 19 3 GH29, GH36
PUL0187 qRT-PCR, enzyme activity assay beta-glucan Paenibacillus sp. JDR-2 <a href=https://pubmed.ncbi.nlm.nih.gov/26746717/>26746717</a>
A 1,3-1,4-beta-Glucan Utilization Regulon in Paenibacillus sp. Strain JDR-2. Appl Environ Microbiol. 2016 Jan 8;82(6):1789-1798. doi: 10.1128/AEM.03526-15.
2016 Jan 8 degradation 7 2 GH16_21, SLH, CBM54, GH16_3, CBM4, CBM4, CBM6, CBM4, CBM4
PUL0194 enzyme activity assay, gene deletion mutant and growth assay host glycan Streptococcus pneumoniae <a href=https://pubmed.ncbi.nlm.nih.gov/28056108/>28056108</a>
Molecular Characterization of N-glycan Degradation and Transport in Streptococcus pneumoniae and Its Contribution to Virulence. PLoS Pathog. 2017 Jan 5;13(1):e1006090. doi: 10.1371/journal.ppat.1006090. eCollection 2017 Jan.
2017 Jan degradation 6 5 GH125, GH20, GH29, GH38, GH92
PUL0196 enzyme activity assay human milk oligosaccharide Lactobacillus casei <a href=https://pubmed.ncbi.nlm.nih.gov/26546429/>26546429</a>
The Extracellular Wall-Bound beta-N-Acetylglucosaminidase from Lactobacillus casei Is Involved in the Metabolism of the Human Milk Oligosaccharide Lacto-N-Triose. Appl Environ Microbiol. 2015 Nov 6;82(2):570-7. doi: 10.1128/AEM.02888-15. Print 2016 Jan 15.
2016 Jan 15 degradation 10 3 CE9, GH20, GH35
PUL0199 enzyme activity assay, liquid chromatography and mass spectrometry alginate Saccharophagus degradans <a href=https://pubmed.ncbi.nlm.nih.gov/26458373/>26458373</a>
Putative Alginate Assimilation Process of the Marine Bacterium Saccharophagus degradans 2-40 Based on Quantitative Proteomic Analysis. Mar Biotechnol (NY). 2016 Feb;18(1):15-23. doi: 10.1007/s10126-015-9667-3. Epub 2015 Oct 12.
2016 Feb degradation 17 6 CBM16, CBM32, PL18, PL17_2, PL17, PL6, PL6, PL6_1, PL7_5
PUL0207 enzyme activity assay, RT-PCR host glycan Streptococcus agalactiae NEM316 <a href=https://pubmed.ncbi.nlm.nih.gov/25605731/>25605731</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/19416976/>19416976</a>
Metabolic fate of unsaturated glucuronic/iduronic acids from glycosaminoglycans: molecular identification and structure determination of streptococcal isomerase and dehydrogenase. Substrate specificity of streptococcal unsaturated glucuronyl hydrolases for sulfated glycosaminoglycan. J Biol Chem. 2015 Mar 6;290(10):6281-92. doi: 10.1074/jbc.M114.604546. Epub 2015 Jan 20. J Biol Chem. 2009 Jul 3;284(27):18059-69. doi: 10.1074/jbc.M109.005660. Epub 2009 May 5.
2015 Mar 6,2009 Jul 3 degradation 7 2 GH88, PL12_1
PUL0208 growth assay, clone and expression, enzyme activity assay chitin Pseudoalteromonas luteoviolacea <a href=https://pubmed.ncbi.nlm.nih.gov/31213521/>31213521</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/10220172/>10220172</a>
Marine Chitinolytic Pseudoalteromonas Represents an Untapped Reservoir of Bioactive Potential. Multiple genes involved in chitin degradation from the marine bacterium Pseudoalteromonas sp. strain S91. mSystems. 2019 Jun 18;4(4):e00060-19. doi: 10.1128/mSystems.00060-19. Microbiology (Reading). 1999 Apr;145 ( Pt 4):925-934. doi: 10.1099/13500872-145-4-925.
2019 Jun 18,1999 Apr degradation 3 3 AA10, CBM5, CBM5, GH18, GH18, CBM5, CBM5
PUL0209 enzyme activity assay, gene deletion mutant and growth assay galactan Dickeya dadantii <a href=https://pubmed.ncbi.nlm.nih.gov/17644603/>17644603</a>
Characterization of the Erwinia chrysanthemi Gan locus, involved in galactan catabolism. J Bacteriol. 2007 Oct;189(19):7053-61. doi: 10.1128/JB.00845-07. Epub 2007 Jul 20.
2007 Oct degradation 9 2 GH42, GH53
PUL0210 enzyme activity assay host glycan Clostridium perfringens <a href=https://pubmed.ncbi.nlm.nih.gov/25605731/>25605731</a>
Metabolic fate of unsaturated glucuronic/iduronic acids from glycosaminoglycans: molecular identification and structure determination of streptococcal isomerase and dehydrogenase. J Biol Chem. 2015 Mar 6;290(10):6281-92. doi: 10.1074/jbc.M114.604546. Epub 2015 Jan 20.
2015 Mar 6 degradation 13 3 GH88, PL12_1, PL8
PUL0211 enzyme activity assay, gene deletion mutant and growth assay, thin-layer chromatography host glycan Xanthomonas campestris pv. campestris <a href=https://pubmed.ncbi.nlm.nih.gov/25586188/>25586188</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/25205095/>25205095</a>
The N-Glycan cluster from Xanthomonas campestris pv. campestris: a toolbox for sequential plant N-glycan processing. The plant pathogen Xanthomonas campestris pv. campestris exploits N-acetylglucosamine during infection. J Biol Chem. 2015 Mar 6;290(10):6022-36. doi: 10.1074/jbc.M114.624593. Epub 2015 Jan 13. mBio. 2014 Sep 9;5(5):e01527-14. doi: 10.1128/mBio.01527-14.
2015 Mar 6,2014 Sep 9 degradation 9 8 GH125, GH18, GH2, GH20, GH29, GH3, GH35, GH92
PUL0215 qPCR, enzyme activity assay xyloglucan Cellvibrio japonicus <a href=https://pubmed.ncbi.nlm.nih.gov/25171165/>25171165</a>
A complex gene locus enables xyloglucan utilization in the model saprophyte Cellvibrio japonicus. Mol Microbiol. 2014 Oct;94(2):418-33. doi: 10.1111/mmi.12776. Epub 2014 Sep 17.
2014 Oct degradation 4 3 GH31_4, GH35, GH95
PUL0216 Western Blot, enzyme activity assay, RT-PCR, microarray alginate Sphingomonas sp. <a href=https://pubmed.ncbi.nlm.nih.gov/24816607/>24816607</a>
Alginate-dependent gene expression mechanism in Sphingomonas sp. strain A1. J Bacteriol. 2014 Jul;196(14):2691-700. doi: 10.1128/JB.01666-14. Epub 2014 May 9.
2014 Jul degradation 10 3 AA2, PL15_1, PL5, PL7
PUL0218 enzyme activity assay arabinan termite gut metagenome <a href=https://pubmed.ncbi.nlm.nih.gov/25304507/>25304507</a>
Investigating the function of an arabinan utilization locus isolated from a termite gut community. Appl Environ Microbiol. 2015 Jan;81(1):31-9. doi: 10.1128/AEM.02257-14. Epub 2014 Oct 10.
2015 Jan degradation 24 5 GH146, GH97, GH43_4, GH51_1, GH51_2, GH43_29
PUL0219 sugar utilization assay, enzyme activity assay fructan Lactobacillus paracasei <a href=https://pubmed.ncbi.nlm.nih.gov/17644636/>17644636</a>
Functional analysis of the fructooligosaccharide utilization operon in Lactobacillus paracasei 1195. Appl Environ Microbiol. 2007 Sep;73(18):5716-24. doi: 10.1128/AEM.00805-07. Epub 2007 Jul 20.
2007 Sep degradation 7 1 GH32
PUL0227 enzyme activity assay, substrate binding assay xylan Caldanaerobius polysaccharolyticus <a href=https://pubmed.ncbi.nlm.nih.gov/22918832/>22918832</a>
Biochemical and structural insights into xylan utilization by the thermophilic bacterium Caldanaerobius polysaccharolyticus. J Biol Chem. 2012 Oct 12;287(42):34946-34960. doi: 10.1074/jbc.M112.391532. Epub 2012 Aug 22.
2012 Oct 12 degradation 10 3 CE4, GH3, GH67
PUL0230 RT-PCR, enzyme activity assay, clone, enzyme kinetic analysis, thin-layer chromatography, crystallization starch Lactobacillus acidophilus <a href=https://pubmed.ncbi.nlm.nih.gov/22685275/>22685275</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/32444471/>32444471</a>
Enzymology and structure of the GH13_31 glucan 1,6-alpha-glucosidase that confers isomaltooligosaccharide utilization in the probiotic Lactobacillus acidophilus NCFM. An 1,4-alpha-Glucosyltransferase Defines a New Maltodextrin Catabolism Scheme in Lactobacillus acidophilus. J Bacteriol. 2012 Aug;194(16):4249-59. doi: 10.1128/JB.00622-12. Epub 2012 Jun 8. Appl Environ Microbiol. 2020 Jul 20;86(15):e00661-20. doi: 10.1128/AEM.00661-20. Print 2020 Jul 20.
2012 Aug,2020 Jul 20 degradation 12 3 CBM34, GH13_20, GH13_31, GH65
PUL0231 enzyme activity assay, cosmid library screening beta-glucoside Pectobacterium carotovorum subsp. carotovorum <a href=https://pubmed.ncbi.nlm.nih.gov/22502871/>22502871</a>
Cloning and biochemical analysis of beta-glucoside utilization (bgl) operon without phosphotransferase system in Pectobacterium carotovorum subsp. carotovorum LY34. Microbiol Res. 2012 Sep 6;167(8):461-9. doi: 10.1016/j.micres.2012.03.004. Epub 2012 Apr 12.
2012 Sep 6 degradation 2 1 GH1
PUL0245 enzyme activity assay, gene deletion mutant and growth assay, Western Blot fucose Streptococcus pneumoniae <a href=https://pubmed.ncbi.nlm.nih.gov/24333485/>24333485</a>
Structural and functional analysis of fucose-processing enzymes from Streptococcus pneumoniae. J Mol Biol. 2014 Apr 3;426(7):1469-82. doi: 10.1016/j.jmb.2013.12.006. Epub 2013 Dec 12.
2014 Apr 3 degradation 11 2 GH95, GH98, CBM47, CBM47, CBM47
PUL0246 enzyme activity assay, gene deletion mutant and growth assay, Western Blot fucose Streptococcus pneumoniae <a href=https://pubmed.ncbi.nlm.nih.gov/24333485/>24333485</a>
Structural and functional analysis of fucose-processing enzymes from Streptococcus pneumoniae. J Mol Biol. 2014 Apr 3;426(7):1469-82. doi: 10.1016/j.jmb.2013.12.006. Epub 2013 Dec 12.
2014 Apr 3 degradation 11 4 CBM51, CBM51, GH98, GH29, GH36
PUL0265 enzyme activity assay, gene deletion mutant and growth assay starch Staphylococcus xylosus <a href=https://pubmed.ncbi.nlm.nih.gov/7730272/>7730272</a>
Characterization of a genetic locus essential for maltose-maltotriose utilization in Staphylococcus xylosus. J Bacteriol. 1995 May;177(9):2408-15. doi: 10.1128/jb.177.9.2408-2415.1995.
1995 May degradation 2 1 GH13_31
PUL0266 enzyme activity assay human milk oligosaccharide Halorubrum lacusprofundi <a href=https://pubmed.ncbi.nlm.nih.gov/23320757/>23320757</a>
Cloning, overexpression, purification, and characterization of a polyextremophilic beta-galactosidase from the Antarctic haloarchaeon Halorubrum lacusprofundi. BMC Biotechnol. 2013 Jan 16;13:3. doi: 10.1186/1472-6750-13-3.
2013 Jan 16 degradation 15 2 GH36, GH42
PUL0282 enzyme activity assay galactan Geobacillus stearothermophilus <a href=https://pubmed.ncbi.nlm.nih.gov/23216604/>23216604</a>
Functional characterization of the galactan utilization system of Geobacillus stearothermophilus. FEBS J. 2013 Feb;280(3):950-64. doi: 10.1111/febs.12089. Epub 2013 Jan 7.
2013 Feb degradation 7 2 CBM61, GH53, CBM61, GH42
PUL0289 enzyme activity assay xylan Flavobacterium johnsoniae <a href=https://pubmed.ncbi.nlm.nih.gov/29588659/>29588659</a>
A novel acetyl xylan esterase enabling complete deacetylation of substituted xylans. Biotechnol Biofuels. 2018 Mar 22;11:74. doi: 10.1186/s13068-018-1074-3. eCollection 2018.
2018 degradation 12 7 CE6, CE1, GH115, GH146, GH3, GH43_10, CBM91, GH43_12, CBM91, GH97
PUL0292 enzyme activity assay chitin Collimonas fungivorans <a href=https://pubmed.ncbi.nlm.nih.gov/18671744/>18671744</a>
Identification and characterization of genes underlying chitinolysis in Collimonas fungivorans Ter331. FEMS Microbiol Ecol. 2008 Oct;66(1):123-35. doi: 10.1111/j.1574-6941.2008.00547.x. Epub 2008 Jul 30.
2008 Oct degradation 11 2 GH16, GH3
PUL0302 RT-qPCR, isothermal titration calorimetry (ITC), enzyme activity assay, gene deletion mutant and growth assay, high-performance anion-exchange chromatography arabinan Bacteroides thetaiotaomicron <a href=https://pubmed.ncbi.nlm.nih.gov/29255254/>29255254</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/22686399/>22686399</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/21339299/>21339299</a>
Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Prioritization of a plant polysaccharide over a mucus carbohydrate is enforced by a Bacteroides hybrid two-component system. The structure and function of an arabinan-specific alpha-1,2-arabinofuranosidase identified from screening the activities of bacterial GH43 glycoside hydrolases. Nat Microbiol. 2018 Feb;3(2):210-219. doi: 10.1038/s41564-017-0079-1. Epub 2017 Dec 18. Mol Microbiol. 2012 Aug;85(3):478-91. doi: 10.1111/j.1365-2958.2012.08123.x. Epub 2012 Jul 5. J Biol Chem. 2011 Apr 29;286(17):15483-95. doi: 10.1074/jbc.M110.215962. Epub 2011 Feb 21.
2018 Feb,2012 Aug,2011 Apr 29 degradation 22 6 GH146, GH43_29, GH43_4, GH51_1, GH51_2
PUL0303 enzyme activity assay chitin Collimonas fungivorans <a href=https://pubmed.ncbi.nlm.nih.gov/18671744/>18671744</a>
Identification and characterization of genes underlying chitinolysis in Collimonas fungivorans Ter331. FEMS Microbiol Ecol. 2008 Oct;66(1):123-35. doi: 10.1111/j.1574-6941.2008.00547.x. Epub 2008 Jul 30.
2008 Oct degradation 7 1 CE9
PUL0304 RT-qPCR, isothermal titration calorimetry (ITC), enzyme activity assay, gene deletion mutant and growth assay galactan Bacteroides thetaiotaomicron <a href=https://pubmed.ncbi.nlm.nih.gov/29255254/>29255254</a>
Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nat Microbiol. 2018 Feb;3(2):210-219. doi: 10.1038/s41564-017-0079-1. Epub 2017 Dec 18.
2018 Feb degradation 7 2 GH2, GH53
PUL0305 RT-qPCR, isothermal titration calorimetry (ITC), enzyme activity assay, gene deletion mutant and growth assay pectin Bacteroides thetaiotaomicron <a href=https://pubmed.ncbi.nlm.nih.gov/29255254/>29255254</a>
Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nat Microbiol. 2018 Feb;3(2):210-219. doi: 10.1038/s41564-017-0079-1. Epub 2017 Dec 18.
2018 Feb degradation 17 7 CE12, CE8, CE8, GH105, GH28, PL1_2
PUL0306 RT-qPCR, isothermal titration calorimetry (ITC), enzyme activity assay, gene deletion mutant and growth assay pectin Bacteroides ovatus <a href=https://pubmed.ncbi.nlm.nih.gov/29255254/>29255254</a>
Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nat Microbiol. 2018 Feb;3(2):210-219. doi: 10.1038/s41564-017-0079-1. Epub 2017 Dec 18.
2018 Feb degradation 7 3 GH147, GH2, GH53
PUL0307 enzyme activity assay chitin Serratia marcescens subsp. marcescens <a href=https://pubmed.ncbi.nlm.nih.gov/29229757/>29229757</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/8757722/>8757722</a>
Structure and activity of ChiX: a peptidoglycan hydrolase required for chitinase secretion by Serratia marcescens. Comparative studies of chitinases A and B from Serratia marcescens. Biochem J. 2018 Jan 23;475(2):415-428. doi: 10.1042/BCJ20170633. Microbiology (Reading). 1996 Jul;142 ( Pt 7):1581-9. doi: 10.1099/13500872-142-7-1581.
2018 Jan 23,1996 Jul degradation 6 2 AA10, GH18
PUL0309 enzyme activity assay, substrate binding assay, isothermal titration calorimetry (ITC) arabinan Caldanaerobius polysaccharolyticus <a href=https://pubmed.ncbi.nlm.nih.gov/28710263/>28710263</a>
Enzymatic Mechanism for Arabinan Degradation and Transport in the Thermophilic Bacterium Caldanaerobius polysaccharolyticus. Appl Environ Microbiol. 2017 Aug 31;83(18):e00794-17. doi: 10.1128/AEM.00794-17. Print 2017 Sep 15.
2017 Sep 15 degradation 12 6 GH127, GH146, GH27, GH43_4, GH51_1
PUL0311 enzyme activity assay cellulose Escherichia coli <a href=https://pubmed.ncbi.nlm.nih.gov/31455320/>31455320</a>
Identification and characterization of an Endo-glucanase secreted from cellulolytic Escherichia coli ZH-4. BMC Biotechnol. 2019 Aug 27;19(1):63. doi: 10.1186/s12896-019-0556-0.
2019 Aug 27 degradation 4 2 GH8, GT2
PUL0321 enzyme activity assay, transposon mutagenesis beta-glucoside Escherichia coli <a href=https://pubmed.ncbi.nlm.nih.gov/19233952/>19233952</a>
Characterization of a beta-glucoside operon (bgc) prevalent in septicemic and uropathogenic Escherichia coli strains. Appl Environ Microbiol. 2009 Apr;75(8):2284-93. doi: 10.1128/AEM.02621-08. Epub 2009 Feb 20.
2009 Apr degradation 6 1 GH1
PUL0325 RT-PCR, enzyme activity assay beta-glucan Bacteroides thetaiotaomicron <a href=https://pubmed.ncbi.nlm.nih.gov/28461332/>28461332</a>
A Bacteroidetes locus dedicated to fungal 1,6-beta-glucan degradation: Unique substrate conformation drives specificity of the key endo-1,6-beta-glucanase. J Biol Chem. 2017 Jun 23;292(25):10639-10650. doi: 10.1074/jbc.M117.787606. Epub 2017 May 1.
2017 Jun 23 degradation 6 2 GH3, GH30_3
PUL0326 gene deletion mutant and growth assay, enzyme activity assay, thin-layer chromatography beta-glucan Bacteroides ovatus <a href=https://pubmed.ncbi.nlm.nih.gov/28461332/>28461332</a>
A Bacteroidetes locus dedicated to fungal 1,6-beta-glucan degradation: Unique substrate conformation drives specificity of the key endo-1,6-beta-glucanase. J Biol Chem. 2017 Jun 23;292(25):10639-10650. doi: 10.1074/jbc.M117.787606. Epub 2017 May 1.
2017 Jun 23 degradation 13 1 GH73
PUL0330 fosmid library screen, enzyme activity assay, thin-layer chromatography pectin Gramella flava <a href=https://pubmed.ncbi.nlm.nih.gov/28261179/>28261179</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/30341080/>30341080</a>
Characterization of Potential Polysaccharide Utilization Systems in the Marine Bacteroidetes Gramella Flava JLT2011 Using a Multi-Omics Approach. Biochemical Reconstruction of a Metabolic Pathway from a Marine Bacterium Reveals Its Mechanism of Pectin Depolymerization. Front Microbiol. 2017 Feb 14;8:220. doi: 10.3389/fmicb.2017.00220. eCollection 2017. Appl Environ Microbiol. 2018 Dec 13;85(1):e02114-18. doi: 10.1128/AEM.02114-18. Print 2019 Jan 1.
2017,2019 Jan 1 degradation 28 10 CE12, CE8, GH105, GH28, GH28, PL9_1, GH43_10, CBM91, PL10_1, PL9_1
PUL0332 fosmid library screen, enzyme activity assay, thin-layer chromatography beta-glucan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/28091525/>28091525</a>
A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic. Sci Rep. 2017 Jan 16;7:40248. doi: 10.1038/srep40248.
2017 Jan 16 degradation 19 8 CE7, GH127, GH2, GH5_2, GH5_7, GH94, GH97
PUL0333 fosmid library screen, enzyme activity assay, thin-layer chromatography beta-glucan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/28091525/>28091525</a>
A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic. Sci Rep. 2017 Jan 16;7:40248. doi: 10.1038/srep40248.
2017 Jan 16 degradation 22 4 GH30, GH31_3, GH9
PUL0334 fosmid library screen, enzyme activity assay, thin-layer chromatography beta-glucan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/28091525/>28091525</a>
A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic. Sci Rep. 2017 Jan 16;7:40248. doi: 10.1038/srep40248.
2017 Jan 16 degradation 23 7 CE20, CE4, GH30, GH31_3, GH9
PUL0335 fosmid library screen, enzyme activity assay, thin-layer chromatography xylan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/28091525/>28091525</a>
A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic. Sci Rep. 2017 Jan 16;7:40248. doi: 10.1038/srep40248.
2017 Jan 16 degradation 31 5 GH13_46, GH158, GH16_3, GH3, GH97
PUL0336 fosmid library screen, enzyme activity assay, thin-layer chromatography xylan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/28091525/>28091525</a>
A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic. Sci Rep. 2017 Jan 16;7:40248. doi: 10.1038/srep40248.
2017 Jan 16 degradation 25 4 GH158, GH16_3, GH3, GT2
PUL0337 fosmid library screen, enzyme activity assay, thin-layer chromatography xylan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/28091525/>28091525</a>
A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic. Sci Rep. 2017 Jan 16;7:40248. doi: 10.1038/srep40248.
2017 Jan 16 degradation 29 4 GH158, GH16_3, GH3, GT2
PUL0338 fosmid library screen, enzyme activity assay, thin-layer chromatography xylan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/28091525/>28091525</a>
A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic. Sci Rep. 2017 Jan 16;7:40248. doi: 10.1038/srep40248.
2017 Jan 16 degradation 34 5 GH158, GH16_3, GH3, GH97, GT2
PUL0339 fosmid library screen, enzyme activity assay, thin-layer chromatography xylan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/28091525/>28091525</a>
A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic. Sci Rep. 2017 Jan 16;7:40248. doi: 10.1038/srep40248.
2017 Jan 16 degradation 24 4 GH16_3, GH20, GH3, GH97
PUL0340 fosmid library screen, enzyme activity assay, thin-layer chromatography beta-glucan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/28091525/>28091525</a>
A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic. Sci Rep. 2017 Jan 16;7:40248. doi: 10.1038/srep40248.
2017 Jan 16 degradation 37 1 GH5_2
PUL0341 fosmid library screen, enzyme activity assay, thin-layer chromatography beta-glucan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/28091525/>28091525</a>
A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic. Sci Rep. 2017 Jan 16;7:40248. doi: 10.1038/srep40248.
2017 Jan 16 degradation 43 3 GH32, GH5_2, GH91
PUL0342 enzyme activity assay, gene deletion mutant and growth assay xylan Prevotella ruminicola <a href=https://pubmed.ncbi.nlm.nih.gov/19304844/>19304844</a>
Biochemical analysis of a beta-D-xylosidase and a bifunctional xylanase-ferulic acid esterase from a xylanolytic gene cluster in Prevotella ruminicola 23. J Bacteriol. 2009 May;191(10):3328-38. doi: 10.1128/JB.01628-08. Epub 2009 Mar 20.
2009 May degradation 5 3 GH10, CE1, GH3, GH95
PUL0343 gene deletion mutant and growth assay, enzyme activity assay, Western Blot, isothermal titration calorimetry (ITC) beta-glucan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/28091525/>28091525</a>
A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic. Sci Rep. 2017 Jan 16;7:40248. doi: 10.1038/srep40248.
2017 Jan 16 degradation 39 1 GH5_2
PUL0345 qRT-PCR, enzyme activity assay xylan Bacteroides intestinalis <a href=https://pubmed.ncbi.nlm.nih.gov/27681607/>27681607</a>
Bacteroides intestinalis DSM 17393, a member of the human colonic microbiome, upregulates multiple endoxylanases during growth on xylan. Sci Rep. 2016 Sep 29;6:34360. doi: 10.1038/srep34360.
2016 Sep 29 degradation 31 13 CE1, CE20, CE20, CE6, GH95, GH10, GH10, GH43_12, CBM91, GH115, GH35, GH43_1, GH5_21, GH67, GH8
PUL0348 enzyme activity assay host glycan Bacteroides fragilis <a href=https://pubmed.ncbi.nlm.nih.gov/22449996/>22449996</a>
Characterization of a gene cluster for sialoglycoconjugate utilization in Bacteroides fragilis. J Med Invest. 2012;59(1-2):79-94. doi: 10.2152/jmi.59.79.
2012 degradation 13 9 CBM93, GH33, CE3, CE20, GH2, GH20, GH20, CBM32, GH92
PUL0351 enzyme activity assay starch Escherichia coli <a href=https://pubmed.ncbi.nlm.nih.gov/1435727/>1435727</a>
Characterization of a chromosomally encoded, non-PTS metabolic pathway for sucrose utilization in Escherichia coli EC3132. Mol Gen Genet. 1992 Oct;235(1):22-32. doi: 10.1007/BF00286177.
1992 Oct degradation 4 1 GH32
PUL0361 enzyme activity assay starch Thermotoga maritima <a href=https://pubmed.ncbi.nlm.nih.gov/10972187/>10972187</a>
Thermotoga maritima AglA, an extremely thermostable NAD+-, Mn2+-, and thiol-dependent alpha-glucosidase. Extremophiles. 2000 Aug;4(4):189-200. doi: 10.1007/pl00010711.
2000 Aug degradation 6 3 GH13_20, GH13_36, GH4
PUL0362 enzyme activity assay starch Xanthomonas campestris pv. campestris <a href=https://pubmed.ncbi.nlm.nih.gov/17311090/>17311090</a>
Plant carbohydrate scavenging through tonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS One. 2007 Feb 21;2(2):e224. doi: 10.1371/journal.pone.0000224.
2007 Feb 21 degradation 4 1 GH13_4
PUL0363 enzyme activity assay pectin Xanthomonas campestris pv. campestris <a href=https://pubmed.ncbi.nlm.nih.gov/17311090/>17311090</a>
Plant carbohydrate scavenging through tonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS One. 2007 Feb 21;2(2):e224. doi: 10.1371/journal.pone.0000224.
2007 Feb 21 degradation 3 2 CE8, PL10_1
PUL0364 enzyme activity assay xylan Xanthomonas campestris pv. campestris <a href=https://pubmed.ncbi.nlm.nih.gov/17311090/>17311090</a>
Plant carbohydrate scavenging through tonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS One. 2007 Feb 21;2(2):e224. doi: 10.1371/journal.pone.0000224.
2007 Feb 21 degradation 8 4 GH10, GH2, GH43_1
PUL0371 enzyme activity assay starch Thermococcus sp. B1001 <a href=https://pubmed.ncbi.nlm.nih.gov/11489857/>11489857</a>
Extracellular synthesis, specific recognition, and intracellular degradation of cyclomaltodextrins by the hyperthermophilic archaeon Thermococcus sp. strain B1001. J Bacteriol. 2001 Sep;183(17):5050-7. doi: 10.1128/JB.183.17.5050-5057.2001.
2001 Sep degradation 5 2 CBM34, GH13_20, GH13_2, CBM20
PUL0372 enzyme activity assay beta-glucoside Corynebacterium glutamicum <a href=https://pubmed.ncbi.nlm.nih.gov/19628558/>19628558</a>
Identification of a second beta-glucoside phosphoenolpyruvate: carbohydrate phosphotransferase system in Corynebacterium glutamicum R. Microbiology (Reading). 2009 Nov;155(Pt 11):3652-3660. doi: 10.1099/mic.0.029496-0. Epub 2009 Jul 23.
2009 Nov degradation 3 1 GH1
PUL0373 enzyme activity assay starch Dickeya dadantii <a href=https://pubmed.ncbi.nlm.nih.gov/19734309/>19734309</a>
Catabolism of raffinose, sucrose, and melibiose in Erwinia chrysanthemi 3937. J Bacteriol. 2009 Nov;191(22):6960-7. doi: 10.1128/JB.00594-09. Epub 2009 Sep 4.
2009 Nov degradation 5 1 GH32
PUL0377 microarray, qPCR, enzyme activity assay glycosaminoglycan Bacteroides thetaiotaomicron <a href=https://pubmed.ncbi.nlm.nih.gov/18996345/>18996345</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/30262663/>30262663</a>
Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. The human gut microbe Bacteroides thetaiotaomicron encodes the founding member of a novel glycosaminoglycan-degrading polysaccharide lyase family PL29. Cell Host Microbe. 2008 Nov 13;4(5):447-57. doi: 10.1016/j.chom.2008.09.007. J Biol Chem. 2018 Nov 16;293(46):17906-17916. doi: 10.1074/jbc.RA118.004510. Epub 2018 Sep 27.
2008 Nov 13,2018 Nov 16 degradation 27 5 GH2, GH88, PL29, PL8_2
PUL0380 microarray, qPCR, microarray, enzyme activity assay, strcutural analysis, clone and expression mucin Bacteroides thetaiotaomicron <a href=https://pubmed.ncbi.nlm.nih.gov/18996345/>18996345</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/16968696/>16968696</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/32060313/>32060313</a>
Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Functional genomic and metabolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period. Structural basis of mammalian high-mannose N-glycan processing by human gut Bacteroides. Cell Host Microbe. 2008 Nov 13;4(5):447-57. doi: 10.1016/j.chom.2008.09.007. J Biol Chem. 2006 Nov 24;281(47):36269-79. doi: 10.1074/jbc.M606509200. Epub 2006 Sep 12. Nat Commun. 2020 Feb 14;11(1):899. doi: 10.1038/s41467-020-14754-7.
2008 Nov 13,2006 Nov 24,2020 Feb 14 degradation 12 4 GH18, GH92
PUL0390 enzyme activity assay xylan Thermotoga maritima <a href=https://pubmed.ncbi.nlm.nih.gov/21255309/>21255309</a>
Hyperthermostable acetyl xylan esterase. Microb Biotechnol. 2010 Jan;3(1):84-92. doi: 10.1111/j.1751-7915.2009.00150.x. Epub 2009 Sep 18.
2010 Jan degradation 24 6 CBM22, CBM22, CBM22, GH10, CBM9, CBM9, CE7, GH10, GH3, GH67
PUL0393 enzyme activity assay, analysis of reaction products galactan Microbulbifer thermotolerans <a href=https://pubmed.ncbi.nlm.nih.gov/20686828/>20686828</a>
Hyper-production and characterization of the iota-carrageenase useful for iota-carrageenan oligosaccharide production from a deep-sea bacterium, Microbulbifer thermotolerans JAMB-A94T, and insight into the unusual catalytic mechanism. Mar Biotechnol (NY). 2011 Jun;13(3):411-22. doi: 10.1007/s10126-010-9312-0. Epub 2010 Aug 5.
2011 Jun degradation 5 2 CBM6, CBM6, GH86, GH86, GH16_16, CBM6
PUL0402 Northern Blot, enzyme activity assay xylan Lactococcus lactis subsp. lactis IO-1 <a href=https://pubmed.ncbi.nlm.nih.gov/11282589/>11282589</a>
Genetic evidence for a defective xylan degradation pathway in Lactococcus lactis. Appl Environ Microbiol. 2001 Apr;67(4):1445-52. doi: 10.1128/AEM.67.4.1445-1452.2001.
2001 Apr degradation 6 1 GH43_11, CBM91
PUL0407 primer extension analysis, enzyme activity assay human milk oligosaccharide Lactobacillus casei <a href=https://pubmed.ncbi.nlm.nih.gov/9066115/>9066115</a>
Establishing a model to study the regulation of the lactose operon in Lactobacillus casei. FEMS Microbiol Lett. 1997 Mar 1;148(1):83-9. doi: 10.1111/j.1574-6968.1997.tb10271.x.
1997 Mar 1 degradation 4 1 GH1
PUL0408 enzyme activity assay, thin-layer chromatography beta-mannan Bacteroides fragilis <a href=https://pubmed.ncbi.nlm.nih.gov/24217874/>24217874</a>
The mannobiose-forming exo-mannanase involved in a new mannan catabolic pathway in Bacteroides fragilis. Arch Microbiol. 2014 Jan;196(1):17-23. doi: 10.1007/s00203-013-0938-y. Epub 2013 Nov 12.
2014 Jan degradation 4 2 GH130_1, GH26
PUL0411 enzyme activity assay xylan Prevotella bryantii <a href=https://pubmed.ncbi.nlm.nih.gov/7487028/>7487028</a>
A xylan hydrolase gene cluster in Prevotella ruminicola B(1)4: sequence relationships, synergistic interactions, and oxygen sensitivity of a novel enzyme with exoxylanase and beta-(1,4)-xylosidase activities. Appl Environ Microbiol. 1995 Aug;61(8):2958-64. doi: 10.1128/aem.61.8.2958-2964.1995.
1995 Aug degradation 2 2 GH10, GH43_1
PUL0412 clone and expression, enzyme activity assay pectin Ralstonia solanacearum <a href=https://pubmed.ncbi.nlm.nih.gov/12795379/>12795379</a>
Characterization of a Ralstonia solanacearum operon required for polygalacturonate degradation and uptake of galacturonic acid. Mol Plant Microbe Interact. 2003 Jun;16(6):536-44. doi: 10.1094/MPMI.2003.16.6.536.
2003 Jun degradation 2 1 GH28
PUL0413 enzyme activity assay, reducing-sugar assay cellobiose uncultured bacterium contig00059 <a href=https://pubmed.ncbi.nlm.nih.gov/30116044/>30116044</a>
Functional metagenomics reveals abundant polysaccharide-degrading gene clusters and cellobiose utilization pathways within gut microbiota of a wood-feeding higher termite. ISME J. 2019 Jan;13(1):104-117. doi: 10.1038/s41396-018-0255-1. Epub 2018 Aug 16.
2019 Jan degradation 31 2 GH1, GH44
PUL0414 enzyme activity assay, thin-layer chromatography xylan uncultured bacterium 35A20 <a href=https://pubmed.ncbi.nlm.nih.gov/30116044/>30116044</a>
Functional metagenomics reveals abundant polysaccharide-degrading gene clusters and cellobiose utilization pathways within gut microbiota of a wood-feeding higher termite. ISME J. 2019 Jan;13(1):104-117. doi: 10.1038/s41396-018-0255-1. Epub 2018 Aug 16.
2019 Jan degradation 25 4 GH1, GH10
PUL0423 clone and expression, enzyme activity assay cellobiose Thermotoga neapolitana <a href=https://pubmed.ncbi.nlm.nih.gov/10960102/>10960102</a>
Cloning and characterization of the glucooligosaccharide catabolic pathway beta-glucan glucohydrolase and cellobiose phosphorylase in the marine hyperthermophile Thermotoga neapolitana. J Bacteriol. 2000 Sep;182(18):5172-9. doi: 10.1128/JB.182.18.5172-5179.2000.
2000 Sep degradation 3 2 GH1, GH94
PUL0442 mass spectrometry, high-performance anion-exchange chromatography, SDS-PAGE, recombinant protein expression, enzyme activity assay, substrate binding assay glucomannan/chitin Chitinophaga pinensis DSM 2588 <a href=https://pubmed.ncbi.nlm.nih.gov/28069559/>28069559</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/37493618/>37493618</a>
Proteomic insights into mannan degradation and protein secretion by the forest floor bacterium Chitinophaga pinensis. A polysaccharide utilization locus from Chitinophaga pinensis simultaneously targets chitin and beta-glucans found in fungal cell walls. J Proteomics. 2017 Mar 6;156:63-74. doi: 10.1016/j.jprot.2017.01.003. Epub 2017 Jan 6. mSphere. 2023 Aug 24;8(4):e0024423. doi: 10.1128/msphere.00244-23. Epub 2023 Jul 26.
2017 Mar 6,2023 Aug 24 degradation 9 3 GH16_3, CBM6, GH18, CBM6, GH18, GH18, CBM5
PUL0445 recombinant protein expression, thin-layer chromatography, enzyme activity assay alginate Sphingomonas sp. <a href=https://pubmed.ncbi.nlm.nih.gov/10913091/>10913091</a>
Molecular identification of oligoalginate lyase of Sphingomonas sp. strain A1 as one of the enzymes required for complete depolymerization of alginate. J Bacteriol. 2000 Aug;182(16):4572-7. doi: 10.1128/JB.182.16.4572-4577.2000.
2000 Aug degradation 8 2 PL15_1, PL5, PL7
PUL0455 clone and expression, genes induced in presence of substrate, enzyme activity assay starch Bifidobacterium animalis <a href=https://pubmed.ncbi.nlm.nih.gov/12513973/>12513973</a>
Induction of sucrose utilization genes from Bifidobacterium lactis by sucrose and raffinose. Appl Environ Microbiol. 2003 Jan;69(1):24-32. doi: 10.1128/AEM.69.1.24-32.2003.
2003 Jan degradation 3 1 GH13_18
PUL0457 high-performance anion-exchange chromatography, enzyme activity assay, RNA-seq xylan Lactobacillus rossiae <a href=https://pubmed.ncbi.nlm.nih.gov/27142164/>27142164</a>
Cloning, expression and characterization of a beta-D-xylosidase from Lactobacillus rossiae DSM 15814(T). Microb Cell Fact. 2016 May 3;15:72. doi: 10.1186/s12934-016-0473-z.
2016 May 3 degradation 7 1 GH43_11, CBM91
PUL0458 RNA-seq, analysis of reaction products, enzyme activity assay carrageenan Colwellia echini <a href=https://pubmed.ncbi.nlm.nih.gov/31915221/>31915221</a>
A Multifunctional Polysaccharide Utilization Gene Cluster in Colwellia echini Encodes Enzymes for the Complete Degradation of kappa-Carrageenan, iota-Carrageenan, and Hybrid beta/kappa-Carrageenan. mSphere. 2020 Jan 8;5(1):e00792-19. doi: 10.1128/mSphere.00792-19.
2020 Jan 8 degradation 46 9 GH16_13, GH16_13, CBM16, CBM16, GH16_17, GH16_3, GH167, GH82
PUL0459 RNA-seq, analysis of reaction products, enzyme activity assay, thin-layer chromatography, liquid chromatography, mass spectrometry agarose Colwellia echini A3 <a href=https://pubmed.ncbi.nlm.nih.gov/31915221/>31915221</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/33811026/>33811026</a>
A Multifunctional Polysaccharide Utilization Gene Cluster in Colwellia echini Encodes Enzymes for the Complete Degradation of kappa-Carrageenan, iota-Carrageenan, and Hybrid beta/kappa-Carrageenan. A Novel Auxiliary Agarolytic Pathway Expands Metabolic Versatility in the Agar-Degrading Marine Bacterium Colwellia echini A3(T). mSphere. 2020 Jan 8;5(1):e00792-19. doi: 10.1128/mSphere.00792-19. Appl Environ Microbiol. 2021 May 26;87(12):e0023021. doi: 10.1128/AEM.00230-21. Epub 2021 May 26.
2020 Jan 8,2021 May 26 degradation 45 9 GH117, GH117, GH2, GH29, GH50, GH86, GH96
PUL0460 recombinant protein expression, RT-PCR, enzyme activity assay agar Paraglaciecola hydrolytica S66 <a href=https://pubmed.ncbi.nlm.nih.gov/29774012/>29774012</a>
A Novel Enzyme Portfolio for Red Algal Polysaccharide Degradation in the Marine Bacterium Paraglaciecola hydrolytica S66(T) Encoded in a Sizeable Polysaccharide Utilization Locus. Front Microbiol. 2018 May 3;9:839. doi: 10.3389/fmicb.2018.00839. eCollection 2018.
2018 degradation 23 6 CE2, GH2, GH29, GH50, GH63, GH86, GH86, CBM6
PUL0466 clone and expression, enzyme activity assay, Northern Blot arabinan Bacillus subtilis <a href=https://pubmed.ncbi.nlm.nih.gov/14973026/>14973026</a>
Transcriptional regulation of genes encoding arabinan-degrading enzymes in Bacillus subtilis. J Bacteriol. 2004 Mar;186(5):1287-96. doi: 10.1128/JB.186.5.1287-1296.2004.
2004 Mar degradation 9 1 GH51_1
PUL0485 growth assay, qRT-PCR, enzyme activity assay, affinity gel electrophoresis, crystallization, recombinant protein expression starch Flavobacterium johnsoniae <a href=https://pubmed.ncbi.nlm.nih.gov/19717629/>19717629</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/37269952/>37269952</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/38661728/>38661728</a>
Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Bacteroidota polysaccharide utilization system for branched dextran exopolysaccharides from lactic acid bacteria. Structural insights into alpha-(1-->6)-linkage preference of GH97 glucodextranase from Flavobacterium johnsoniae. Appl Environ Microbiol. 2009 Nov;75(21):6864-75. doi: 10.1128/AEM.01495-09. Epub 2009 Aug 28. J Biol Chem. 2023 Jul;299(7):104885. doi: 10.1016/j.jbc.2023.104885. Epub 2023 Jun 2. FEBS J. 2024 Jul;291(14):3267-3282. doi: 10.1111/febs.17139. Epub 2024 Apr 25.
2009 Nov,2023 Jul,2024 Jul degradation 9 5 GH27, CBM13, GH31, GH65, GH66, GH97
PUL0497 clone and expression, enzyme activity assay chitin Pseudoalteromonas piscicida <a href=https://pubmed.ncbi.nlm.nih.gov/11772635/>11772635</a>
Identification and characterization of the gene cluster involved in chitin degradation in a marine bacterium, Alteromonas sp. strain O-7. Appl Environ Microbiol. 2002 Jan;68(1):263-70. doi: 10.1128/AEM.68.1.263-270.2002.
2002 Jan degradation 3 3 AA10, CBM5, GH18, GH18, CBM5
PUL0508 clone and expression, enzyme activity assay xylan Streptomyces thermoviolaceus <a href=https://pubmed.ncbi.nlm.nih.gov/14761997/>14761997</a>
Molecular characterization of a high-affinity xylobiose transporter of Streptomyces thermoviolaceus OPC-520 and its transcriptional regulation. J Bacteriol. 2004 Feb;186(4):1029-37. doi: 10.1128/JB.186.4.1029-1037.2004.
2004 Feb degradation 5 1 GH3
PUL0520 clone and expression, enzyme activity assay xylan Klebsiella oxytoca <a href=https://pubmed.ncbi.nlm.nih.gov/14532050/>14532050</a>
Cloning, characterization, and functional expression of the Klebsiella oxytoca xylodextrin utilization operon (xynTB) in Escherichia coli. Appl Environ Microbiol. 2003 Oct;69(10):5957-67. doi: 10.1128/AEM.69.10.5957-5967.2003.
2003 Oct degradation 2 1 GH43_11, CBM91
PUL0531 clone and expression, enzyme activity assay chitin Serratia marcescens <a href=https://pubmed.ncbi.nlm.nih.gov/12618440/>12618440</a>
Uptake of N,N'-diacetylchitobiose [(GlcNAc)2] via the phosphotransferase system is essential for chitinase production by Serratia marcescens 2170. J Bacteriol. 2003 Mar;185(6):1776-82. doi: 10.1128/JB.185.6.1776-1782.2003.
2003 Mar degradation 5 1 GH1
PUL0555 gene deletion mutant and growth assay, qRT-PCR, microarray, enzyme activity assay host glycan Bacteroides fragilis <a href=https://pubmed.ncbi.nlm.nih.gov/25139987/>25139987</a>
Efficient utilization of complex N-linked glycans is a selective advantage for Bacteroides fragilis in extraintestinal infections. Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12901-6. doi: 10.1073/pnas.1407344111. Epub 2014 Aug 19.
2014 Sep 2 degradation 9 5 GH154, GH2, GH20, GH88, PL33_1
PUL0556 gene deletion mutant and growth assay, qRT-PCR, microarray, enzyme activity assay host glycan Bacteroides fragilis <a href=https://pubmed.ncbi.nlm.nih.gov/25139987/>25139987</a>
Efficient utilization of complex N-linked glycans is a selective advantage for Bacteroides fragilis in extraintestinal infections. Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12901-6. doi: 10.1073/pnas.1407344111. Epub 2014 Aug 19.
2014 Sep 2 degradation 8 2 GH18, GH97
PUL0558 gene deletion mutant and growth assay, growth assay, enzyme activity assay pectin Bacteroides thetaiotaomicron <a href=https://pubmed.ncbi.nlm.nih.gov/28329766/>28329766</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/22205877/>22205877</a>
Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. Nature. 2017 Apr 6;544(7648):65-70. doi: 10.1038/nature21725. Epub 2017 Mar 22. PLoS Biol. 2011 Dec;9(12):e1001221. doi: 10.1371/journal.pbio.1001221. Epub 2011 Dec 20.
2017 Apr 6,2011 Dec degradation 50 21 CBM67, GH78, CBM67, GH78, GH33, CE19, CE20, GH105, GH106, GH127, GH137, GH2, CBM57, CBM97, GH138, GH139, GH140, GH141, GH143, GH142, GH2, GH28, GH43_18, GH78, GH95, PL1_2
PUL0559 gene deletion mutant and growth assay, growth assay, enzyme activity assay, microarray, qPCR pectin Bacteroides thetaiotaomicron <a href=https://pubmed.ncbi.nlm.nih.gov/28329766/>28329766</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/18996345/>18996345</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/22205877/>22205877</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/16968696/>16968696</a>
Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. Functional genomic and metabolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period. Nature. 2017 Apr 6;544(7648):65-70. doi: 10.1038/nature21725. Epub 2017 Mar 22. Cell Host Microbe. 2008 Nov 13;4(5):447-57. doi: 10.1016/j.chom.2008.09.007. PLoS Biol. 2011 Dec;9(12):e1001221. doi: 10.1371/journal.pbio.1001221. Epub 2011 Dec 20. J Biol Chem. 2006 Nov 24;281(47):36269-79. doi: 10.1074/jbc.M606509200. Epub 2006 Sep 12.
2017 Apr 6,2008 Nov 13,2011 Dec,2006 Nov 24 degradation 12 4 GH29, GH43_10, CBM91, GH43_34, CBM32, GH97
PUL0561 clone and expression, enzyme activity assay alpha-galactan Lactobacillus plantarum <a href=https://pubmed.ncbi.nlm.nih.gov/12406739/>12406739</a>
Characterization of the melA locus for alpha-galactosidase in Lactobacillus plantarum. Appl Environ Microbiol. 2002 Nov;68(11):5464-71. doi: 10.1128/AEM.68.11.5464-5471.2002.
2002 Nov degradation 5 2 GH2, GH36
PUL0568 clone and expression, enzyme activity assay, Northern Blot starch Clostridium beijerinckii <a href=https://pubmed.ncbi.nlm.nih.gov/10411273/>10411273</a>
The genes controlling sucrose utilization in Clostridium beijerinckii NCIMB 8052 constitute an operon. Microbiology (Reading). 1999 Jun;145 ( Pt 6):1461-1472. doi: 10.1099/13500872-145-6-1461.
1999 Jun degradation 4 1 GH32
PUL0569 clone and expression, enzyme activity assay, Northern Blot fructan Bacillus subtilis <a href=https://pubmed.ncbi.nlm.nih.gov/11739774/>11739774</a>
yveB, Encoding endolevanase LevB, is part of the sacB-yveB-yveA levansucrase tricistronic operon in Bacillus subtilis. Microbiology (Reading). 2001 Dec;147(Pt 12):3413-9. doi: 10.1099/00221287-147-12-3413.
2001 Dec degradation 4 2 GH32, GH68_1
PUL0570 clone and expression, enzyme activity assay cellobiose Corynebacterium glutamicum <a href=https://pubmed.ncbi.nlm.nih.gov/12777497/>12777497</a>
A single V317A or V317M substitution in Enzyme II of a newly identified beta-glucoside phosphotransferase and utilization system of Corynebacterium glutamicum R extends its specificity towards cellobiose. Microbiology (Reading). 2003 Jun;149(Pt 6):1569-1580. doi: 10.1099/mic.0.26053-0.
2003 Jun degradation 3 1 GH1
PUL0572 enzyme activity assay alginate Pseudomonas aeruginosa <a href=https://pubmed.ncbi.nlm.nih.gov/8335634/>8335634</a>
Characterization of the Pseudomonas aeruginosa alginate lyase gene (algL): cloning, sequencing, and expression in Escherichia coli. J Bacteriol. 1993 Aug;175(15):4780-9. doi: 10.1128/jb.175.15.4780-4789.1993.
1993 Aug biosynthesis 12 2 GT2, PL5_1
PUL0573 enzyme activity assay, electrophoretic mobility shift assay, RT-PCR, qRT-PCR beta-glucan Streptomyces griseus <a href=https://pubmed.ncbi.nlm.nih.gov/19648249/>19648249</a>
CebR as a master regulator for cellulose/cellooligosaccharide catabolism affects morphological development in Streptomyces griseus. J Bacteriol. 2009 Oct;191(19):5930-40. doi: 10.1128/JB.00703-09. Epub 2009 Jul 31.
2009 Oct degradation 5 1 GH1
PUL0574 enzyme activity assay alpha-mannan Streptococcus pyogenes <a href=https://pubmed.ncbi.nlm.nih.gov/16822234/>16822234</a>
Functional analysis of a group A streptococcal glycoside hydrolase Spy1600 from family 84 reveals it is a beta-N-acetylglucosaminidase and not a hyaluronidase. Biochem J. 2006 Oct 15;399(2):241-7. doi: 10.1042/BJ20060307.
2006 Oct 15 degradation 8 4 GH1, GH125, GH38, GH84
PUL0577 SDS-PAGE, enzyme activity assay chitin Photobacterium profundum <a href=https://pubmed.ncbi.nlm.nih.gov/21098515/>21098515</a>
Elucidation of exo-beta-D-glucosaminidase activity of a family 9 glycoside hydrolase (PBPRA0520) from Photobacterium profundum SS9. Glycobiology. 2011 Apr;21(4):503-11. doi: 10.1093/glycob/cwq191. Epub 2010 Nov 22.
2011 Apr degradation 11 3 GH20, GH9, GH94
PUL0578 qRT-PCR, enzyme activity assay, electrophoretic mobility shift assay beta-glucan Bifidobacterium breve <a href=https://pubmed.ncbi.nlm.nih.gov/21216899/>21216899</a>
Cellodextrin utilization by bifidobacterium breve UCC2003. Appl Environ Microbiol. 2011 Mar;77(5):1681-90. doi: 10.1128/AEM.01786-10. Epub 2011 Jan 7.
2011 Mar degradation 5 1 GH1
PUL0581 SDS-PAGE, enzyme activity assay fructan Microbulbifer sp. JAM-3301 <a href=https://pubmed.ncbi.nlm.nih.gov/22286980/>22286980</a>
Cloning and sequencing of inulinase and beta-fructofuranosidase genes of a deep-sea Microbulbifer species and properties of recombinant enzymes. Appl Environ Microbiol. 2012 Apr;78(7):2493-5. doi: 10.1128/AEM.07442-11. Epub 2012 Jan 27.
2012 Apr degradation 3 2 GH32
PUL0582 NMR, microarray, enzyme activity assay, gene deletion mutant and growth assay human milk oligosaccharide Lactococcus lactis <a href=https://pubmed.ncbi.nlm.nih.gov/22660716/>22660716</a>
A specific mutation in the promoter region of the silent cel cluster accounts for the appearance of lactose-utilizing Lactococcus lactis MG1363. Appl Environ Microbiol. 2012 Aug;78(16):5612-21. doi: 10.1128/AEM.00455-12. Epub 2012 Jun 1.
2012 Aug degradation 5 2 GH1, GH170
PUL0583 enzyme activity assay, gene deletion mutant and growth assay cellobiose Geobacillus stearothermophilus <a href=https://pubmed.ncbi.nlm.nih.gov/8407820/>8407820</a>
Cloning and sequencing of a cellobiose phosphotransferase system operon from Bacillus stearothermophilus XL-65-6 and functional expression in Escherichia coli. J Bacteriol. 1993 Oct;175(20):6441-50. doi: 10.1128/jb.175.20.6441-6450.1993.
1993 Oct degradation 5 0 NA
PUL0586 enzyme activity assay chitin Serratia marcescens <a href=https://pubmed.ncbi.nlm.nih.gov/23047109/>23047109</a>
Regulation of chitinase production by the 5'-untranslated region of the ybfM in Serratia marcescens 2170. Biosci Biotechnol Biochem. 2012;76(10):1920-4. doi: 10.1271/bbb.120403. Epub 2012 Oct 7.
2012 degradation 3 1 GH20
PUL0587 RT-PCR, enzyme activity assay fructan Prevotella intermedia <a href=https://pubmed.ncbi.nlm.nih.gov/23266804/>23266804</a>
Identification and functional analysis of the gene cluster for fructan utilization in Prevotella intermedia. Gene. 2013 Feb 25;515(2):291-7. doi: 10.1016/j.gene.2012.12.023. Epub 2012 Dec 22.
2013 Feb 25 degradation 3 1 GH32
PUL0588 enzyme activity assay, RT-PCR chitin Streptomyces coelicolor <a href=https://pubmed.ncbi.nlm.nih.gov/23278377/>23278377</a>
Enzymatic and genetic characterization of the DasD protein possessing N-acetyl-beta-d-glucosaminidase activity in Streptomyces coelicolor A3(2). FEMS Microbiol Lett. 2013 Mar;340(1):33-40. doi: 10.1111/1574-6968.12069. Epub 2013 Jan 16.
2013 Mar degradation 4 1 GH3
PUL0589 Western Blot, enzyme activity assay, thin-layer chromatography starch Streptococcus mutans <a href=https://pubmed.ncbi.nlm.nih.gov/23930155/>23930155</a>
The malQ gene is essential for starch metabolism in Streptococcus mutans. J Oral Microbiol. 2013 Aug 6;5. doi: 10.3402/jom.v5i0.21285. Print 2013.
2013 degradation 3 2 GH77, GT35
PUL0595 enzyme activity assay, qPCR, crystallization starch [Eubacterium] rectale <a href=https://pubmed.ncbi.nlm.nih.gov/25388295/>25388295</a>
Molecular details of a starch utilization pathway in the human gut symbiont Eubacterium rectale. Mol Microbiol. 2015 Jan;95(2):209-30. doi: 10.1111/mmi.12859. Epub 2014 Dec 19.
2015 Jan degradation 4 1 CBM82, CBM83, GH13_41
PUL0596 enzyme activity assay, qPCR, crystallization starch [Eubacterium] rectale <a href=https://pubmed.ncbi.nlm.nih.gov/25388295/>25388295</a>
Molecular details of a starch utilization pathway in the human gut symbiont Eubacterium rectale. Mol Microbiol. 2015 Jan;95(2):209-30. doi: 10.1111/mmi.12859. Epub 2014 Dec 19.
2015 Jan degradation 4 1 GH13_36
PUL0597 enzyme activity assay, enzyme kinetic analysis arabinoxylan Corynebacterium alkanolyticum <a href=https://pubmed.ncbi.nlm.nih.gov/25862223/>25862223</a>
Functional Characterization of Corynebacterium alkanolyticum beta-Xylosidase and Xyloside ABC Transporter in Corynebacterium glutamicum. Appl Environ Microbiol. 2015 Jun 15;81(12):4173-83. doi: 10.1128/AEM.00792-15. Epub 2015 Apr 10.
2015 Jun 15 degradation 5 1 GH3
PUL0606 enzyme activity assay, clone and expression beta-galactooligosaccharide Bifidobacterium breve UCC2003 <a href=https://pubmed.ncbi.nlm.nih.gov/32385941/>32385941</a>
Biochemical analysis of cross-feeding behaviour between two common gut commensals when cultivated on plant-derived arabinogalactan. Microb Biotechnol. 2020 Nov;13(6):1733-1747. doi: 10.1111/1751-7915.13577. Epub 2020 May 9.
2020 Nov degradation 3 1 GH2
PUL0607 enzyme activity assay, clone and expression, liquid chromatography and mass spectrometry agarose Wenyingzhuangia fucanilytica strain CZ1127 <a href=https://pubmed.ncbi.nlm.nih.gov/32520542/>32520542</a>
Characterization of a Novel Porphyranase Accommodating Methyl-galactoses at Its Subsites. J Agric Food Chem. 2020 Jul 1;68(26):7032-7039. doi: 10.1021/acs.jafc.0c02404. Epub 2020 Jun 22.
2020 Jul 1 degradation 22 8 GH105, GH154, GH117, GH141, GH16_11, GH16_14, GH2, GH29
PUL0608 enzyme activity assay, clone and expression, liquid chromatography and mass spectrometry, thin-layer chromatography, MALDI-TOF/MS human milk oligosaccharide Roseburia hominis DSM 16839 <a href=https://pubmed.ncbi.nlm.nih.gov/32620774/>32620774</a>
Butyrate producing colonic Clostridiales metabolise human milk oligosaccharides and cross feed on mucin via conserved pathways. Nat Commun. 2020 Jul 3;11(1):3285. doi: 10.1038/s41467-020-17075-x.
2020 Jul 3 degradation 9 2 GH112, GH136
PUL0609 enzyme activity assay, clone and expression, liquid chromatography and mass spectrometry, thin-layer chromatography, MALDI-TOF/MS human milk oligosaccharide Roseburia inulinivorans DSM 16841 <a href=https://pubmed.ncbi.nlm.nih.gov/32620774/>32620774</a>
Butyrate producing colonic Clostridiales metabolise human milk oligosaccharides and cross feed on mucin via conserved pathways. Nat Commun. 2020 Jul 3;11(1):3285. doi: 10.1038/s41467-020-17075-x.
2020 Jul 3 degradation 11 4 GH112, GH136, CBM32, GH95
PUL0610 enzyme activity assay, strcutural analysis xylan Rhodothermus marinus <a href=https://pubmed.ncbi.nlm.nih.gov/31992772/>31992772</a>
Characterization and diversity of the complete set of GH family 3 enzymes from Rhodothermus marinus DSM 4253. Sci Rep. 2020 Jan 28;10(1):1329. doi: 10.1038/s41598-020-58015-5.
2020 Jan 28 degradation 15 6 CBM4, CBM4, GH10, GH10, GH3, GH43_15, CBM91, CBM6, GH67
PUL0630 enzyme activity assay, affinity gel electrophoresis xylan termite gut metagenome <a href=https://pubmed.ncbi.nlm.nih.gov/33187992/>33187992</a>
Multimodularity of a GH10 Xylanase Found in the Termite Gut Metagenome. Appl Environ Microbiol. 2021 Jan 15;87(3):e01714-20. doi: 10.1128/AEM.01714-20. Print 2021 Jan 15.
2021 Jan 15 degradation 9 5 CE20, CE20, GH11, GH10, GH115, GH43_1
PUL0643 enzyme activity assay, liquid chromatography, high-performance anion-exchange chromatography, qRT-PCR, crystallization arabinoxylan Bacteroides intestinalis DSM 17393 <a href=https://pubmed.ncbi.nlm.nih.gov/33469030/>33469030</a>
Degradation of complex arabinoxylans by human colonic Bacteroidetes. Nat Commun. 2021 Jan 19;12(1):459. doi: 10.1038/s41467-020-20737-5.
2021 Jan 19 degradation 12 7 CE1, CE6, CE1, GH3, GH43_17, GH43_2, CBM6, GH43_7, GH43_7
PUL0644 enzyme activity assay, liquid chromatography, high-performance anion-exchange chromatography, qRT-PCR, crystallization arabinoxylan Bacteroides cellulosilyticus DSM 14838 <a href=https://pubmed.ncbi.nlm.nih.gov/33469030/>33469030</a>
Degradation of complex arabinoxylans by human colonic Bacteroidetes. Nat Commun. 2021 Jan 19;12(1):459. doi: 10.1038/s41467-020-20737-5.
2021 Jan 19 degradation 12 8 CE1, GH3, GH43_17, GH43_2, CBM6, GH43_7, GH43_7, GH9
PUL0645 enzyme activity assay, liquid chromatography, high-performance anion-exchange chromatography, qRT-PCR, crystallization arabinoxylan Bacteroides oleiciplenus YIT 12058 <a href=https://pubmed.ncbi.nlm.nih.gov/33469030/>33469030</a>
Degradation of complex arabinoxylans by human colonic Bacteroidetes. Nat Commun. 2021 Jan 19;12(1):459. doi: 10.1038/s41467-020-20737-5.
2021 Jan 19 degradation 10 5 CE1, GH3, GH43_17, GH43_2, CBM6, GH43_7, GH43_7
PUL0646 recombinant protein expression, crystallization, affinity gel electrophoresis, isothermal titration calorimetry (ITC) beta-glucan Bacteroides fluxus YIT 12057 <a href=https://pubmed.ncbi.nlm.nih.gov/33587952/>33587952</a>
Distinct protein architectures mediate species-specific beta-glucan binding and metabolism in the human gut microbiota. J Biol Chem. 2021 Jan-Jun;296:100415. doi: 10.1016/j.jbc.2021.100415. Epub 2021 Feb 13.
2021 Jan-Jun degradation 6 2 GH158, GH3
PUL0650 enzyme activity assay, high-performance anion-exchange chromatography, recombinant protein expression, NMR, gene deletion mutant and growth assay arabinogalactan Bifidobacterium longum JCM 7052 <a href=https://pubmed.ncbi.nlm.nih.gov/33674431/>33674431</a>
Novel 3-O-alpha-d-Galactosyl-alpha-l-Arabinofuranosidase for the Assimilation of Gum Arabic Arabinogalactan Protein in Bifidobacterium longum subsp. longum. Appl Environ Microbiol. 2021 Apr 27;87(10):e02690-20. doi: 10.1128/AEM.02690-20. Print 2021 Apr 27.
2021 Apr 27 degradation 7 2 GH36, GH39, CBM35
PUL0651 enzyme activity assay, NMR agarose Gilvimarinus chinensis DSM 19667 <a href=https://pubmed.ncbi.nlm.nih.gov/33691998/>33691998</a>
Agarase cocktail from agar polysaccharide utilization loci converts homogenized Gelidium amansii into neoagarooligosaccharides. Food Chem. 2021 Aug 1;352:128685. doi: 10.1016/j.foodchem.2020.128685. Epub 2020 Nov 19.
2021 Aug 1 degradation 63 15 CBM6, CBM6, CBM6, GH86, GH86, CE1, GH117, GH127, GH16_16, CBM13, GH16_16, CBM6, CBM6, GH16_3, GH167, GH2, GH50, GH86
PUL0653 gene deletion mutant and growth assay, complementation study, enzyme activity assay, RNA-seq, electrophoretic mobility shift assay agarose Streptomyces coelicolor A3(2) <a href=https://pubmed.ncbi.nlm.nih.gov/33889146/>33889146</a>
LacI-Family Transcriptional Regulator DagR Acts as a Repressor of the Agarolytic Pathway Genes in Streptomyces coelicolor A3(2). Front Microbiol. 2021 Apr 6;12:658657. doi: 10.3389/fmicb.2021.658657. eCollection 2021.
2021 degradation 17 4 GH117, GH117, GH16_16, GH2, GH50
PUL0671 gene deletion mutant and growth assay, enzyme activity assay, Western Blot, qPCR cellulose Cytophaga hutchinsonii ATCC 33406 <a href=https://pubmed.ncbi.nlm.nih.gov/34731049/>34731049</a>
A Type IX Secretion System Substrate Involved in Crystalline Cellulose Degradation by Affecting Crucial Cellulose Binding Proteins in Cytophaga hutchinsonii. Appl Environ Microbiol. 2022 Jan 25;88(2):e0183721. doi: 10.1128/AEM.01837-21. Epub 2021 Nov 3.
2022 Jan 25 degradation 6 0 NA
PUL0674 microarray, enzyme activity assay, high-performance anion-exchange chromatography, mass spectrometry, RNA-seq, affinity gel electrophoresis, carbohydrate binding assay, microscale thermophoresis beta-glucan Bacteroides ovatus ATCC 8483 <a href=https://pubmed.ncbi.nlm.nih.gov/34817219/>34817219</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/29020628/>29020628</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/22205877/>22205877</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/32801182/>32801182</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/31062073/>31062073</a>
Mapping Molecular Recognition of beta1,3-1,4-Glucans by a Surface Glycan-Binding Protein from the Human Gut Symbiont Bacteroides ovatus. Molecular Mechanism by which Prominent Human Gut Bacteroidetes Utilize Mixed-Linkage Beta-Glucans, Major Health-Promoting Cereal Polysaccharides. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. Sharing a beta-Glucan Meal: Transcriptomic Eavesdropping on a Bacteroides ovatus-Subdoligranulum variabile-Hungatella hathewayi Consortium. Surface glycan-binding proteins are essential for cereal beta-glucan utilization by the human gut symbiont Bacteroides ovatus. Microbiol Spectr. 2021 Dec 22;9(3):e0182621. doi: 10.1128/Spectrum.01826-21. Epub 2021 Nov 24. Cell Rep. 2017 Oct 10;21(2):417-430. doi: 10.1016/j.celrep.2017.09.049. PLoS Biol. 2011 Dec;9(12):e1001221. doi: 10.1371/journal.pbio.1001221. Epub 2011 Dec 20. Appl Environ Microbiol. 2020 Oct 1;86(20):e01651-20. doi: 10.1128/AEM.01651-20. Print 2020 Oct 1. Cell Mol Life Sci. 2019 Nov;76(21):4319-4340. doi: 10.1007/s00018-019-03115-3. Epub 2019 May 6.
2021 Dec 22,2017 Oct 10,2011 Dec,2020 Oct 1,2019 Nov degradation 8 3 GH16_3, GH3
PUL0675 recombinant protein expression, enzyme activity assay, liquid chromatography, growth assay levoglucosan Klebsiella pneumoniae MEC097 <a href=https://pubmed.ncbi.nlm.nih.gov/34910566/>34910566</a>
Isolation and Characterization of Levoglucosan-Metabolizing Bacteria. Appl Environ Microbiol. 2022 Feb 22;88(4):e0186821. doi: 10.1128/AEM.01868-21. Epub 2021 Dec 15.
2022 Feb 22 degradation 5 1 GH179
PUL0676 recombinant protein expression, enzyme activity assay, liquid chromatography levoglucosan Microbacterium MEC084 <a href=https://pubmed.ncbi.nlm.nih.gov/34910566/>34910566</a>
Isolation and Characterization of Levoglucosan-Metabolizing Bacteria. Appl Environ Microbiol. 2022 Feb 22;88(4):e0186821. doi: 10.1128/AEM.01868-21. Epub 2021 Dec 15.
2022 Feb 22 degradation 6 1 GH179
PUL0677 recombinant protein expression, enzyme activity assay, liquid chromatography levoglucosan Shinella sumterensis MEC087 <a href=https://pubmed.ncbi.nlm.nih.gov/34910566/>34910566</a>
Isolation and Characterization of Levoglucosan-Metabolizing Bacteria. Appl Environ Microbiol. 2022 Feb 22;88(4):e0186821. doi: 10.1128/AEM.01868-21. Epub 2021 Dec 15.
2022 Feb 22 degradation 5 1 GH179
PUL0681 enzyme activity assay, NMR pectic polysaccharide Bacteroidaceae bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/35110564/>35110564</a>
Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides. Nat Commun. 2022 Feb 2;13(1):629. doi: 10.1038/s41467-022-28310-y.
2022 Feb 2 degradation 10 5 GH173, GH2, GH5_57, GH78
PUL0682 enzyme activity assay, affinity gel electrophoresis xylan Bacteroidaceae bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/35110564/>35110564</a>
Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides. Nat Commun. 2022 Feb 2;13(1):629. doi: 10.1038/s41467-022-28310-y.
2022 Feb 2 degradation 3 3 CBM89, GH10, GH43_12, CBM91, GH97
PUL0683 enzyme activity assay, recombinant protein expression nigerooligosaccharide Lactococcus cremoris subsp. cremoris MG1363 <a href=https://pubmed.ncbi.nlm.nih.gov/35293315/>35293315</a>
Structural basis of the strict specificity of a bacterial GH31 alpha-1,3-glucosidase for nigerooligosaccharides. J Biol Chem. 2022 May;298(5):101827. doi: 10.1016/j.jbc.2022.101827. Epub 2022 Mar 12.
2022 May degradation 5 1 GH31_15
PUL0686 enzyme activity assay, liquid chromatography and mass spectrometry, substrate degradation assay, assimilation assay hyaluronan Granulicatella adiacens ATCC 49175 <a href=https://pubmed.ncbi.nlm.nih.gov/35768476/>35768476</a>
Enhanced propagation of Granulicatella adiacens from human oral microbiota by hyaluronan. Sci Rep. 2022 Jun 29;12(1):10948. doi: 10.1038/s41598-022-14857-9.
2022 Jun 29 degradation 17 2 CBM70, PL8_1, PL12_1
PUL0701 qRT-PCR, enzyme activity assay xyloglucan Xanthomonas citri pv. citri str. 306 <a href=https://pubmed.ncbi.nlm.nih.gov/25595763/>25595763</a>
Xylan utilization regulon in Xanthomonas citri pv. citri Strain 306: gene expression and utilization of oligoxylosides. Appl Environ Microbiol. 2015 Mar;81(6):2163-72. doi: 10.1128/AEM.03091-14. Epub 2015 Jan 16.
2015 Mar degradation 31 8 CE20, CE20, GH10, GH2, GH3, GH43_1, GH43_12, CBM91, GH67
PUL0702 enzyme activity assay, gene deletion mutant and growth assay xyloglucan Xanthomonas citri pv. citri str. 306 <a href=https://pubmed.ncbi.nlm.nih.gov/34193873/>34193873</a>
Xyloglucan processing machinery in Xanthomonas pathogens and its role in the transcriptional activation of virulence factors. Nat Commun. 2021 Jun 30;12(1):4049. doi: 10.1038/s41467-021-24277-4.
2021 Jun 30 degradation 8 5 CE20, CE20, GH31_4, GH35, GH74, GH95
PUL0703 enzyme activity assay, recombinant protein expression, thin-layer chromatography agarose Aquimarina sp. ERC-38 <a href=https://pubmed.ncbi.nlm.nih.gov/37002465/>37002465</a>
Agarolytic Pathway in the Newly Isolated Aquimarina sp. Bacterial Strain ERC-38 and Characterization of a Putative beta-agarase. Mar Biotechnol (NY). 2023 Apr;25(2):314-327. doi: 10.1007/s10126-023-10206-7. Epub 2023 Apr 1.
2023 Apr degradation 36 10 CE1, GH117, GH117, GH16_15, GH16_16, GH16_16, CBM6, GH2, GH82, GH86, GH86, GH86, CBM6
PUL0715 clone and expression, enzyme activity assay, ultra-performance liquid chromatography–mass spectrometry(UPLC-MS) alginate Wenyingzhuangia fucanilytica CZ1127 <a href=https://pubmed.ncbi.nlm.nih.gov/37540808/>37540808</a>
A repertoire of alginate lyases in the alginate polysaccharide utilization loci of marine bacterium Wenyingzhuangia fucanilytica: biochemical properties and action pattern. J Sci Food Agric. 2024 Jan 15;104(1):134-140. doi: 10.1002/jsfa.12898. Epub 2023 Aug 23.
2024 Jan 15 degradation 12 4 PL17_2, PL17, PL6, PL6_1, PL7
PUL0718 LC-ESI-MS, enzyme activity assay, recombinant protein expression, enzyme kinetic analysis alginate Bacteroides ovatus strain CP926 <a href=https://pubmed.ncbi.nlm.nih.gov/37791757/>37791757</a>
Three alginate lyases provide a new gut Bacteroides ovatus isolate with the ability to grow on alginate. Appl Environ Microbiol. 2023 Oct 31;89(10):e0118523. doi: 10.1128/aem.01185-23. Epub 2023 Oct 4.
2023 Oct 31 degradation 12 3 PL17_2, PL17, PL38, PL6, PL6_1
PUL0723 crystallization, high-performance anion-exchange chromatography, enzyme activity assay pectin Phocaeicola dorei DSM 17855 <a href=https://pubmed.ncbi.nlm.nih.gov/38179933/>38179933</a>
Polysaccharide utilization loci from Bacteroidota encode CE15 enzymes with possible roles in cleaving pectin-lignin bonds. Appl Environ Microbiol. 2024 Jan 24;90(1):e0176823. doi: 10.1128/aem.01768-23. Epub 2024 Jan 5.
2024 Jan 24 degradation 17 12 CE12, CE15, GH105, GH106, GH106, GH28, GH2, GH28, GH42, GH43_18, GH43_34, CBM32, GH78, PL11
PUL0724 crystallization, high-performance anion-exchange chromatography, enzyme activity assay pectin Phocaeicola vulgatus ATCC 8482 <a href=https://pubmed.ncbi.nlm.nih.gov/38179933/>38179933</a>
Polysaccharide utilization loci from Bacteroidota encode CE15 enzymes with possible roles in cleaving pectin-lignin bonds. Appl Environ Microbiol. 2024 Jan 24;90(1):e0176823. doi: 10.1128/aem.01768-23. Epub 2024 Jan 5.
2024 Jan 24 degradation 16 12 CE12, CE15, GH105, GH106, GH106, GH28, GH2, GH28, GH42, GH43_18, GH43_34, CBM32, GH78, PL11
PUL0727 SDS-PAGE, NMR, enzyme activity assay, size-exclusion chromatography (SEC) fucoidan Wenyingzhuangia fucanilytica strain CZ1127 <a href=https://pubmed.ncbi.nlm.nih.gov/38203394/>38203394</a>
The Discovery of the Fucoidan-Active Endo-1-->4-alpha-L-Fucanase of the GH168 Family, Which Produces Fucoidan Derivatives with Regular Sulfation and Anticoagulant Activity. Int J Mol Sci. 2023 Dec 22;25(1):218. doi: 10.3390/ijms25010218.
2023 Dec 22 degradation 30 16 GH107, GH117, GH141, GH168, GH29, GH43_2, GH95
PUL0729 RT-PCR, gene mutant, enzyme activity assay cellobiose Bacillus thuringiensis serovar kurstaki str. HD73 <a href=https://pubmed.ncbi.nlm.nih.gov/38357353/>38357353</a>
Transcriptional regulation of cellobiose utilization by PRD-domain containing Sigma54-dependent transcriptional activator (CelR) and catabolite control protein A (CcpA) in Bacillus thuringiensis. Front Microbiol. 2024 Jan 31;15:1160472. doi: 10.3389/fmicb.2024.1160472. eCollection 2024.
2024 degradation 9 1 GH4
PUL0730 enzyme activity assay, recombinant protein expression, NMR, HPLC, clone and expression carrageenan Cellulophaga algicola DSM 14237 <a href=https://pubmed.ncbi.nlm.nih.gov/38442258/>38442258</a>
Biocatalytic Conversion of Carrageenans for the Production of 3,6-Anhydro-D-galactose. J Agric Food Chem. 2024 Mar 20;72(11):5816-5827. doi: 10.1021/acs.jafc.3c08613. Epub 2024 Mar 5.
2024 Mar 20 degradation 17 3 GH127, GH16_13
PUL0731 enzyme activity assay, recombinant protein expression, NMR, HPLC, clone and expression carrageenan Saccharicrinis fermentans DSM 9555 <a href=https://pubmed.ncbi.nlm.nih.gov/38442258/>38442258</a>
Biocatalytic Conversion of Carrageenans for the Production of 3,6-Anhydro-D-galactose. J Agric Food Chem. 2024 Mar 20;72(11):5816-5827. doi: 10.1021/acs.jafc.3c08613. Epub 2024 Mar 5.
2024 Mar 20 degradation 20 5 GH110, GH127, GH167, GH2
PUL0732 enzyme activity assay, recombinant protein expression, NMR, HPLC, clone and expression carrageenan Cellulophaga baltica 18 <a href=https://pubmed.ncbi.nlm.nih.gov/38442258/>38442258</a>
Biocatalytic Conversion of Carrageenans for the Production of 3,6-Anhydro-D-galactose. J Agric Food Chem. 2024 Mar 20;72(11):5816-5827. doi: 10.1021/acs.jafc.3c08613. Epub 2024 Mar 5.
2024 Mar 20 degradation 19 3 GH127, GH16_13
PUL0733 enzyme activity assay, recombinant protein expression, NMR, HPLC, clone and expression carrageenan Echinicola pacifica DSM 19836 <a href=https://pubmed.ncbi.nlm.nih.gov/38442258/>38442258</a>
Biocatalytic Conversion of Carrageenans for the Production of 3,6-Anhydro-D-galactose. J Agric Food Chem. 2024 Mar 20;72(11):5816-5827. doi: 10.1021/acs.jafc.3c08613. Epub 2024 Mar 5.
2024 Mar 20 degradation 16 2 GH127, GH129
PUL0734 enzyme activity assay, recombinant protein expression, NMR, HPLC, clone and expression carrageenan Cellulophaga lytica DSM 7489 <a href=https://pubmed.ncbi.nlm.nih.gov/38442258/>38442258</a>
Biocatalytic Conversion of Carrageenans for the Production of 3,6-Anhydro-D-galactose. J Agric Food Chem. 2024 Mar 20;72(11):5816-5827. doi: 10.1021/acs.jafc.3c08613. Epub 2024 Mar 5.
2024 Mar 20 degradation 20 3 GH127, GH129, GH2
PUL0735 enzyme activity assay, clone and expression, reducing-sugar assay, thin-layer chromatography, SDS-PAGE arabinan Bifidobacterium longum subsp. suis DSM 20211 <a href=https://pubmed.ncbi.nlm.nih.gov/38542148/>38542148</a>
Functional Characterization of Endo- and Exo-Hydrolase Genes in Arabinan Degradation Gene Cluster of Bifidobacterium longum subsp. suis. Int J Mol Sci. 2024 Mar 9;25(6):3175. doi: 10.3390/ijms25063175.
2024 Mar 9 degradation 17 7 GH127, GH27, GH43_26, GH43_27, GH43_4, GH51_2
PUL0736 RNA-seq, RT-qPCR, enzyme activity assay, thin-layer chromatography, Western Blot, recombinant protein expression, DSS-induced mouse colitis model alginate Bacteroides clarus YIT 12056 <a href=https://pubmed.ncbi.nlm.nih.gov/38563787/>38563787</a>
Alginate oligosaccharide assimilation by gut microorganisms and the potential role in gut inflammation alleviation. Appl Environ Microbiol. 2024 May 21;90(5):e0004624. doi: 10.1128/aem.00046-24. Epub 2024 Apr 2.
2024 May 21 degradation 10 3 CE20, PL17_2, PL17, PL6, PL6_1
PUL0749 affinity gel electrophoresis beta-glucan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/39012103/>39012103</a>
Biochemical characterization of a SusD-like protein involved in beta-1,3-glucan utilization by an uncultured cow rumen Bacteroides. mSphere. 2024 Aug 28;9(8):e0027824. doi: 10.1128/msphere.00278-24. Epub 2024 Jul 16.
2024 Aug 28 degradation 5 2 GH16_3, GH3
PUL0751 SDS-PAGE, enzyme activity assay lactose Escherichia coli 8178 <a href=https://pubmed.ncbi.nlm.nih.gov/39160293/>39160293</a>
Non-canonical start codons confer context-dependent advantages in carbohydrate utilization for commensal E. coli in the murine gut. Nat Microbiol. 2024 Oct;9(10):2696-2709. doi: 10.1038/s41564-024-01775-x. Epub 2024 Aug 19.
2024 Oct degradation 4 1 GH2
PUL0771 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Rhodopirellula sp. SWK7 <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 27 7 GH141, GH168, GH29
PUL0772 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Rhodopirellula sp. SWK7 <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 9 1 GH29
PUL0773 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Rhodopirellula sp. SWK7 <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 23 3 GH116, GH29, GH97
PUL0774 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Rhodopirellula sp. SWK7 <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 23 8 GH117, GH141, GH168, GH29, GH95
PUL0775 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Rhodopirellula sp. SWK7 <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 14 5 CE14, GH128, GH141, GH29
PUL0776 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Rhodopirellula sp. SWK7 <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 32 10 CE19, CBM51, CE20, GH115, GH116, GH117, GH117, GH29, GH95
PUL0777 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Neorhodopirellula lusitana <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 26 3 GH141, GH29
PUL0778 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Neorhodopirellula lusitana <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 18 4 GH172, GH29, GH3, GH95
PUL0779 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Neorhodopirellula lusitana <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 19 9 GH107, GH141, GH168, GH29
PUL0780 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Neorhodopirellula lusitana <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 24 8 CBM32, CE12, CE6, GH141, GH29, GH95
PUL0781 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Neorhodopirellula lusitana <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 17 4 GH116, GH29, GH95
PUL0782 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Neorhodopirellula lusitana <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 15 3 GH109, GH117, GH29
PUL0783 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Neorhodopirellula lusitana <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 20 6 CBM51, GH115, GH172, GH28, GH29, GH95
PUL0784 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Neorhodopirellula lusitana <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 8 2 GH29, GH95
PUL0785 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Neorhodopirellula lusitana <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 22 5 CE20, CE20, GH95, CE7, GH117, GH168
PUL0792 enzyme activity assay, recombinant protein expression, RNA-seq xylan Bifidobacterium pseudocatenulatum strain YIT11952 <a href=https://pubmed.ncbi.nlm.nih.gov/37938239/>37938239</a>
Xylan utilisation promotes adaptation of Bifidobacterium pseudocatenulatum to the human gastrointestinal tract. ISME Commun. 2021 Oct 28;1(1):62. doi: 10.1038/s43705-021-00066-4.
2021 Oct 28 degradation 15 5 CE20, GH10, CBM9, GH120, GH43_11, CBM91, GH8
PUL0793 enzyme activity assay, quantification of reaction product reducing ends, RNA-seq, differential gene expression, NMR, MALDI-TOF/MS, gas chromatography, mass spectrometry, bicinchoninic acid (BCA) assay, recombinant protein expression arabinan Bacteroides intestinalis DSM 17393 <a href=https://pubmed.ncbi.nlm.nih.gov/39443715/>39443715</a>
In vivo manipulation of human gut Bacteroides fitness by abiotic oligosaccharides. Nat Chem Biol. 2025 Apr;21(4):544-554. doi: 10.1038/s41589-024-01763-6. Epub 2024 Oct 23.
2025 Apr degradation 14 6 CE1, GH127, GH146, GH43_34, CBM32, GH97
PUL0794 enzyme activity assay, quantification of reaction product reducing ends, RNA-seq, differential gene expression, NMR, MALDI-TOF/MS, gas chromatography, mass spectrometry, bicinchoninic acid (BCA) assay, recombinant protein expression arabinan Bacteroides intestinalis DSM 17393 <a href=https://pubmed.ncbi.nlm.nih.gov/39443715/>39443715</a>
In vivo manipulation of human gut Bacteroides fitness by abiotic oligosaccharides. Nat Chem Biol. 2025 Apr;21(4):544-554. doi: 10.1038/s41589-024-01763-6. Epub 2024 Oct 23.
2025 Apr degradation 23 8 GH146, GH28, GH43_29, GH43_4, GH51_1, GH51_2, GH97
PUL0796 recombinant protein expression, RT-PCR, enzyme activity assay carrageenan Paraglaciecola hydrolytica S66 <a href=https://pubmed.ncbi.nlm.nih.gov/29774012/>29774012</a>
A Novel Enzyme Portfolio for Red Algal Polysaccharide Degradation in the Marine Bacterium Paraglaciecola hydrolytica S66(T) Encoded in a Sizeable Polysaccharide Utilization Locus. Front Microbiol. 2018 May 3;9:839. doi: 10.3389/fmicb.2018.00839. eCollection 2018.
2018 degradation 35 8 GH127, GH16_13, GH16_17, GH167, GH82