Browse dbCAN-PUL Entries

PULID Characterization Method(s) Substrate Organism Publication Publish Date Type Num Genes Num CAZymes CazyFamily
PUL0005 enzyme activity assay, crystallization beta-glucan Listeria innocua <a href=https://pubmed.ncbi.nlm.nih.gov/26886583/>26886583</a>
Functional and Structural Analysis of a beta-Glucosidase Involved in beta-1,2-Glucan Metabolism in Listeria innocua. PLoS One. 2016 Feb 17;11(2):e0148870. doi: 10.1371/journal.pone.0148870. eCollection 2016.
2016 degradation 2 2 GH3, GH94
PUL0230 RT-PCR, enzyme activity assay, clone, enzyme kinetic analysis, thin-layer chromatography, crystallization starch Lactobacillus acidophilus <a href=https://pubmed.ncbi.nlm.nih.gov/22685275/>22685275</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/32444471/>32444471</a>
Enzymology and structure of the GH13_31 glucan 1,6-alpha-glucosidase that confers isomaltooligosaccharide utilization in the probiotic Lactobacillus acidophilus NCFM. An 1,4-alpha-Glucosyltransferase Defines a New Maltodextrin Catabolism Scheme in Lactobacillus acidophilus. J Bacteriol. 2012 Aug;194(16):4249-59. doi: 10.1128/JB.00622-12. Epub 2012 Jun 8. Appl Environ Microbiol. 2020 Jul 20;86(15):e00661-20. doi: 10.1128/AEM.00661-20. Print 2020 Jul 20.
2012 Aug,2020 Jul 20 degradation 12 3 CBM34, GH13_20, GH13_31, GH65
PUL0485 growth assay, qRT-PCR, enzyme activity assay, affinity gel electrophoresis, crystallization, recombinant protein expression starch Flavobacterium johnsoniae <a href=https://pubmed.ncbi.nlm.nih.gov/19717629/>19717629</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/37269952/>37269952</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/38661728/>38661728</a>
Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Bacteroidota polysaccharide utilization system for branched dextran exopolysaccharides from lactic acid bacteria. Structural insights into alpha-(1-->6)-linkage preference of GH97 glucodextranase from Flavobacterium johnsoniae. Appl Environ Microbiol. 2009 Nov;75(21):6864-75. doi: 10.1128/AEM.01495-09. Epub 2009 Aug 28. J Biol Chem. 2023 Jul;299(7):104885. doi: 10.1016/j.jbc.2023.104885. Epub 2023 Jun 2. FEBS J. 2024 Jul;291(14):3267-3282. doi: 10.1111/febs.17139. Epub 2024 Apr 25.
2009 Nov,2023 Jul,2024 Jul degradation 9 5 GH27, CBM13, GH31, GH65, GH66, GH97
PUL0595 enzyme activity assay, qPCR, crystallization starch [Eubacterium] rectale <a href=https://pubmed.ncbi.nlm.nih.gov/25388295/>25388295</a>
Molecular details of a starch utilization pathway in the human gut symbiont Eubacterium rectale. Mol Microbiol. 2015 Jan;95(2):209-30. doi: 10.1111/mmi.12859. Epub 2014 Dec 19.
2015 Jan degradation 4 1 CBM82, CBM83, GH13_41
PUL0596 enzyme activity assay, qPCR, crystallization starch [Eubacterium] rectale <a href=https://pubmed.ncbi.nlm.nih.gov/25388295/>25388295</a>
Molecular details of a starch utilization pathway in the human gut symbiont Eubacterium rectale. Mol Microbiol. 2015 Jan;95(2):209-30. doi: 10.1111/mmi.12859. Epub 2014 Dec 19.
2015 Jan degradation 4 1 GH13_36
PUL0643 enzyme activity assay, liquid chromatography, high-performance anion-exchange chromatography, qRT-PCR, crystallization arabinoxylan Bacteroides intestinalis DSM 17393 <a href=https://pubmed.ncbi.nlm.nih.gov/33469030/>33469030</a>
Degradation of complex arabinoxylans by human colonic Bacteroidetes. Nat Commun. 2021 Jan 19;12(1):459. doi: 10.1038/s41467-020-20737-5.
2021 Jan 19 degradation 12 7 CE1, CE6, CE1, GH3, GH43_17, GH43_2, CBM6, GH43_7, GH43_7
PUL0644 enzyme activity assay, liquid chromatography, high-performance anion-exchange chromatography, qRT-PCR, crystallization arabinoxylan Bacteroides cellulosilyticus DSM 14838 <a href=https://pubmed.ncbi.nlm.nih.gov/33469030/>33469030</a>
Degradation of complex arabinoxylans by human colonic Bacteroidetes. Nat Commun. 2021 Jan 19;12(1):459. doi: 10.1038/s41467-020-20737-5.
2021 Jan 19 degradation 12 8 CE1, GH3, GH43_17, GH43_2, CBM6, GH43_7, GH43_7, GH9
PUL0645 enzyme activity assay, liquid chromatography, high-performance anion-exchange chromatography, qRT-PCR, crystallization arabinoxylan Bacteroides oleiciplenus YIT 12058 <a href=https://pubmed.ncbi.nlm.nih.gov/33469030/>33469030</a>
Degradation of complex arabinoxylans by human colonic Bacteroidetes. Nat Commun. 2021 Jan 19;12(1):459. doi: 10.1038/s41467-020-20737-5.
2021 Jan 19 degradation 10 5 CE1, GH3, GH43_17, GH43_2, CBM6, GH43_7, GH43_7
PUL0646 recombinant protein expression, crystallization, affinity gel electrophoresis, isothermal titration calorimetry (ITC) beta-glucan Bacteroides fluxus YIT 12057 <a href=https://pubmed.ncbi.nlm.nih.gov/33587952/>33587952</a>
Distinct protein architectures mediate species-specific beta-glucan binding and metabolism in the human gut microbiota. J Biol Chem. 2021 Jan-Jun;296:100415. doi: 10.1016/j.jbc.2021.100415. Epub 2021 Feb 13.
2021 Jan-Jun degradation 6 2 GH158, GH3
PUL0648 high-performance anion-exchange chromatography, substrate binding assay, thin-layer chromatography, NMR, mass spectrometry, crystallization xylan Dysgonomonas mossii DSM 22836 <a href=https://pubmed.ncbi.nlm.nih.gov/33667545/>33667545</a>
A polysaccharide utilization locus from the gut bacterium Dysgonomonas mossii encodes functionally distinct carbohydrate esterases. J Biol Chem. 2021 Jan-Jun;296:100500. doi: 10.1016/j.jbc.2021.100500. Epub 2021 Mar 2.
2021 Jan-Jun degradation 37 21 CE1, CE1, CE1, CE20, CE20, CE6, GH10, GH115, GH146, GH31_4, GH43_1, GH43_10, CBM91, GH43_12, CBM91, GH43_29, GH43_29, CBM6, GH51_2, GH67, GH8, GH97
PUL0680 gene deletion mutant and growth assay, clone and expression, qRT-PCR, high-performance anion-exchange chromatography, crystallization, recombinant protein expression xyloglucan Bacteroides uniformis ATCC 8492 <a href=https://pubmed.ncbi.nlm.nih.gov/34995484/>34995484</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/34731054/>34731054</a>
Polysaccharide utilization loci in Bacteroides determine population fitness and community-level interactions. Cell Surface Xyloglucan Recognition and Hydrolysis by the Human Gut Commensal Bacteroides uniformis. Cell Host Microbe. 2022 Feb 9;30(2):200-215.e12. doi: 10.1016/j.chom.2021.12.006. Epub 2022 Jan 6. Appl Environ Microbiol. 2022 Jan 11;88(1):e0156621. doi: 10.1128/AEM.01566-21. Epub 2021 Nov 3.
2022 Feb 9,2022 Jan 11 degradation 15 10 CE20, GH43_16, CBM6, GH2, GH29, GH2, GH2, GH31_4, GH42, GH43_33, GH5_4, GH97
PUL0688 clone and expression, crystallization, recombinant protein expression, thin-layer chromatography galactooligosaccharide Bacteroides thetaiotaomicron VPI-5482 <a href=https://pubmed.ncbi.nlm.nih.gov/34149636/>34149636</a>
Analysis of Two SusE-Like Enzymes From Bacteroides thetaiotaomicron Reveals a Potential Degradative Capacity for This Protein Family. Front Microbiol. 2021 Jun 4;12:645765. doi: 10.3389/fmicb.2021.645765. eCollection 2021.
2021 degradation 5 1 GH95
PUL0689 clone and expression, crystallization, recombinant protein expression, thin-layer chromatography galactooligosaccharide Bacteroides thetaiotaomicron VPI-5482 <a href=https://pubmed.ncbi.nlm.nih.gov/34149636/>34149636</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/37598339/>37598339</a>
Analysis of Two SusE-Like Enzymes From Bacteroides thetaiotaomicron Reveals a Potential Degradative Capacity for This Protein Family. Dynamic genetic adaptation of Bacteroides thetaiotaomicron during murine gut colonization. Front Microbiol. 2021 Jun 4;12:645765. doi: 10.3389/fmicb.2021.645765. eCollection 2021. Cell Rep. 2023 Aug 29;42(8):113009. doi: 10.1016/j.celrep.2023.113009. Epub 2023 Aug 21.
2021,2023 Aug 29 degradation 10 4 GH2, CBM32, GH3, GH36, GH43_10, CBM91
PUL0698 clone and expression, high-performance anion-exchange chromatography, crystallization beta-mannan Muricauda sp. MAR_2010_75 <a href=https://pubmed.ncbi.nlm.nih.gov/36411326/>36411326</a>
Marine bacteroidetes use a conserved enzymatic cascade to digest diatom beta-mannan. ISME J. 2023 Feb;17(2):276-285. doi: 10.1038/s41396-022-01342-4. Epub 2022 Nov 21.
2023 Feb degradation 22 8 CE2, GH130_1, GH26, GH27, GH5_26, GH9
PUL0714 clone and expression, crystallization, isothermal titration calorimetry (ITC), thin-layer chromatography, Western Blot, gene mutant starch Bacteroides ovatus strain ATCC 8483  <a href=https://pubmed.ncbi.nlm.nih.gov/37500984/>37500984</a>
BoGH13A(Sus) from Bacteroides ovatus represents a novel alpha-amylase used for Bacteroides starch breakdown in the human gut. Cell Mol Life Sci. 2023 Jul 28;80(8):232. doi: 10.1007/s00018-023-04812-w.
2023 Jul 28 degradation 8 3 GH13_10, GH13_46, GH97
PUL0723 crystallization, high-performance anion-exchange chromatography, enzyme activity assay pectin Phocaeicola dorei DSM 17855 <a href=https://pubmed.ncbi.nlm.nih.gov/38179933/>38179933</a>
Polysaccharide utilization loci from Bacteroidota encode CE15 enzymes with possible roles in cleaving pectin-lignin bonds. Appl Environ Microbiol. 2024 Jan 24;90(1):e0176823. doi: 10.1128/aem.01768-23. Epub 2024 Jan 5.
2024 Jan 24 degradation 17 12 CE12, CE15, GH105, GH106, GH106, GH28, GH2, GH28, GH42, GH43_18, GH43_34, CBM32, GH78, PL11
PUL0724 crystallization, high-performance anion-exchange chromatography, enzyme activity assay pectin Phocaeicola vulgatus ATCC 8482 <a href=https://pubmed.ncbi.nlm.nih.gov/38179933/>38179933</a>
Polysaccharide utilization loci from Bacteroidota encode CE15 enzymes with possible roles in cleaving pectin-lignin bonds. Appl Environ Microbiol. 2024 Jan 24;90(1):e0176823. doi: 10.1128/aem.01768-23. Epub 2024 Jan 5.
2024 Jan 24 degradation 16 12 CE12, CE15, GH105, GH106, GH106, GH28, GH2, GH28, GH42, GH43_18, GH43_34, CBM32, GH78, PL11
PUL0742 gene deletion and growth assay, recombinant protein expression, crystallization, isothermal titration calorimetry (ITC), RNA-seq, ion chromatography, HPLC, growth assay human milk oligosaccharide Bifidobacterium longum subsp. infantis ATCC 15697 <a href=https://pubmed.ncbi.nlm.nih.gov/32985563/>32985563</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/31489370/>31489370</a>
Strain-specific strategies of 2'-fucosyllactose, 3-fucosyllactose, and difucosyllactose assimilation by Bifidobacterium longum subsp. infantis Bi-26 and ATCC 15697. Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacteria-infant symbiosis. Sci Rep. 2020 Sep 28;10(1):15919. doi: 10.1038/s41598-020-72792-z. Sci Adv. 2019 Aug 28;5(8):eaaw7696. doi: 10.1126/sciadv.aaw7696. eCollection 2019 Aug.
2020 Sep 28,2019 Aug degradation 5 1 GH151