Browse dbCAN-PUL Entries

PULID Characterization Method(s) Substrate Organism Publication Publish Date Type Num Genes Num CAZymes CazyFamily
PUL0001 RNA-seq, substrate binding assay, enzyme activity assay, mass spectrometry beta-mannan Roseburia intestinalis <a href=https://pubmed.ncbi.nlm.nih.gov/30796211/>30796211</a>
The human gut Firmicute Roseburia intestinalis is a primary degrader of dietary beta-mannans. Nat Commun. 2019 Feb 22;10(1):905. doi: 10.1038/s41467-019-08812-y.
2019 Feb 22 degradation 15 9 CE17, CBM35inCE17, CE2, GH1, GH113, GH130_1, GH130_2, GH36
PUL0026 qPCR, Western Blot, RNA-seq, enzyme activity assay ribose Bacteroides thetaiotaomicron <a href=https://pubmed.ncbi.nlm.nih.gov/31901520/>31901520</a>
A Ribose-Scavenging System Confers Colonization Fitness on the Human Gut Symbiont Bacteroides thetaiotaomicron in a Diet-Specific Manner. Cell Host Microbe. 2020 Jan 8;27(1):79-92.e9. doi: 10.1016/j.chom.2019.11.009. Epub 2019 Dec 31.
2020 Jan 8 degradation 8 1 GH35
PUL0031 RNA-seq starch Bifidobacterium longum <a href=https://pubmed.ncbi.nlm.nih.gov/16523284/>16523284</a>
A functional analysis of the Bifidobacterium longum cscA and scrP genes in sucrose utilization. Appl Microbiol Biotechnol. 2006 Oct;72(5):975-81. doi: 10.1007/s00253-006-0358-x. Epub 2006 Mar 8.
2006 Oct degradation 3 1 GH32
PUL0032 RNA-seq starch Bifidobacterium longum <a href=https://pubmed.ncbi.nlm.nih.gov/16523284/>16523284</a>
A functional analysis of the Bifidobacterium longum cscA and scrP genes in sucrose utilization. Appl Microbiol Biotechnol. 2006 Oct;72(5):975-81. doi: 10.1007/s00253-006-0358-x. Epub 2006 Mar 8.
2006 Oct degradation 3 1 GH13_18
PUL0048 RNA-seq trehalose Streptococcus mutans <a href=https://pubmed.ncbi.nlm.nih.gov/29632089/>29632089</a>
Characterization of the Trehalose Utilization Operon in Streptococcus mutans Reveals that the TreR Transcriptional Regulator Is Involved in Stress Response Pathways and Toxin Production. J Bacteriol. 2018 May 24;200(12):e00057-18. doi: 10.1128/JB.00057-18. Print 2018 Jun 15.
2018 Jun 15 degradation 3 1 GH13_29
PUL0099 RNA-seq, substrate binding assay, enzyme activity assay, mass spectrometry beta-mannan Roseburia intestinalis <a href=https://pubmed.ncbi.nlm.nih.gov/30796211/>30796211</a>
The human gut Firmicute Roseburia intestinalis is a primary degrader of dietary beta-mannans. Nat Commun. 2019 Feb 22;10(1):905. doi: 10.1038/s41467-019-08812-y.
2019 Feb 22 degradation 3 3 CBM27, GH26, CBM23, GH3
PUL0115 expression of recombinant proteins, RNA-seq, differential gene expression host glycan Bacteroides thetaiotaomicron <a href=https://pubmed.ncbi.nlm.nih.gov/31160824/>31160824</a>
Complex N-glycan breakdown by gut Bacteroides involves an extensive enzymatic apparatus encoded by multiple co-regulated genetic loci. Nat Microbiol. 2019 Sep;4(9):1571-1581. doi: 10.1038/s41564-019-0466-x. Epub 2019 Jun 3.
2019 Sep degradation 7 7 CBM93, GH33, CE3, CE20, GH2, GH20, GH20, CBM32
PUL0116 expression of recombinant proteins, RNA-seq, differential gene expression host glycan Bacteroides thetaiotaomicron <a href=https://pubmed.ncbi.nlm.nih.gov/31160824/>31160824</a>
Complex N-glycan breakdown by gut Bacteroides involves an extensive enzymatic apparatus encoded by multiple co-regulated genetic loci. Nat Microbiol. 2019 Sep;4(9):1571-1581. doi: 10.1038/s41564-019-0466-x. Epub 2019 Jun 3.
2019 Sep degradation 2 1 GH20
PUL0117 expression of recombinant proteins, RNA-seq, differential gene expression, enzyme specificity assay, enzyme activity assay host glycan Bacteroides thetaiotaomicron <a href=https://pubmed.ncbi.nlm.nih.gov/31160824/>31160824</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/23943617/>23943617</a>
Complex N-glycan breakdown by gut Bacteroides involves an extensive enzymatic apparatus encoded by multiple co-regulated genetic loci. Discovery of beta-1,4-D-mannosyl-N-acetyl-D-glucosamine phosphorylase involved in the metabolism of N-glycans. Nat Microbiol. 2019 Sep;4(9):1571-1581. doi: 10.1038/s41564-019-0466-x. Epub 2019 Jun 3. J Biol Chem. 2013 Sep 20;288(38):27366-27374. doi: 10.1074/jbc.M113.469080. Epub 2013 Aug 13.
2019 Sep,2013 Sep 20 degradation 22 7 GH130_2, GH163, GH18, GH20, GH92
PUL0120 expression of recombinant proteins, RNA-seq, differential gene expression host glycan Bacteroides thetaiotaomicron <a href=https://pubmed.ncbi.nlm.nih.gov/31160824/>31160824</a>
Complex N-glycan breakdown by gut Bacteroides involves an extensive enzymatic apparatus encoded by multiple co-regulated genetic loci. Nat Microbiol. 2019 Sep;4(9):1571-1581. doi: 10.1038/s41564-019-0466-x. Epub 2019 Jun 3.
2019 Sep degradation 6 1 GH18
PUL0153 RNA-seq human milk oligosaccharide Lactobacillus rhamnosus <a href=https://pubmed.ncbi.nlm.nih.gov/30332787/>30332787</a>
Prebiotics for Lactose Intolerance: Variability in Galacto-Oligosaccharide Utilization by Intestinal Lactobacillus rhamnosus. Nutrients. 2018 Oct 16;10(10):1517. doi: 10.3390/nu10101517.
2018 Oct 16 degradation 3 1 GH1
PUL0154 RNA-seq, differential gene expression human milk oligosaccharide Lactobacillus rhamnosus <a href=https://pubmed.ncbi.nlm.nih.gov/30332787/>30332787</a>
Prebiotics for Lactose Intolerance: Variability in Galacto-Oligosaccharide Utilization by Intestinal Lactobacillus rhamnosus. Nutrients. 2018 Oct 16;10(10):1517. doi: 10.3390/nu10101517.
2018 Oct 16 degradation 3 1 GH1
PUL0156 RNA-seq, differential gene expression human milk oligosaccharide Lactobacillus rhamnosus <a href=https://pubmed.ncbi.nlm.nih.gov/30332787/>30332787</a>
Prebiotics for Lactose Intolerance: Variability in Galacto-Oligosaccharide Utilization by Intestinal Lactobacillus rhamnosus. Nutrients. 2018 Oct 16;10(10):1517. doi: 10.3390/nu10101517.
2018 Oct 16 degradation 2 1 GH2
PUL0157 RNA-seq, differential gene expression human milk oligosaccharide Lactobacillus rhamnosus <a href=https://pubmed.ncbi.nlm.nih.gov/30332787/>30332787</a>
Prebiotics for Lactose Intolerance: Variability in Galacto-Oligosaccharide Utilization by Intestinal Lactobacillus rhamnosus. Nutrients. 2018 Oct 16;10(10):1517. doi: 10.3390/nu10101517.
2018 Oct 16 degradation 4 1 GH1
PUL0158 RNA-seq, differential gene expression human milk oligosaccharide Lactobacillus rhamnosus <a href=https://pubmed.ncbi.nlm.nih.gov/30332787/>30332787</a>
Prebiotics for Lactose Intolerance: Variability in Galacto-Oligosaccharide Utilization by Intestinal Lactobacillus rhamnosus. Nutrients. 2018 Oct 16;10(10):1517. doi: 10.3390/nu10101517.
2018 Oct 16 degradation 4 1 GH1
PUL0159 RNA-seq, differential gene expression human milk oligosaccharide Lactobacillus rhamnosus <a href=https://pubmed.ncbi.nlm.nih.gov/30332787/>30332787</a>
Prebiotics for Lactose Intolerance: Variability in Galacto-Oligosaccharide Utilization by Intestinal Lactobacillus rhamnosus. Nutrients. 2018 Oct 16;10(10):1517. doi: 10.3390/nu10101517.
2018 Oct 16 degradation 2 1 GH2
PUL0171 qRT-PCR, RNA-seq host glycan Bacteroides fragilis <a href=https://pubmed.ncbi.nlm.nih.gov/27353652/>27353652</a>
cis-Encoded Small RNAs, a Conserved Mechanism for Repression of Polysaccharide Utilization in Bacteroides. J Bacteriol. 2016 Aug 25;198(18):2410-8. doi: 10.1128/JB.00381-16. Print 2016 Sep 15.
2016 Sep 15 degradation 7 1 GH18
PUL0189 RNA-seq, RT-PCR, qPCR pectin Bacteroides xylanisolvens <a href=https://pubmed.ncbi.nlm.nih.gov/26920945/>26920945</a>
Unraveling the pectinolytic function of Bacteroides xylanisolvens using a RNA-seq approach and mutagenesis. BMC Genomics. 2016 Feb 27;17:147. doi: 10.1186/s12864-016-2472-1.
2016 Feb 27 degradation 17 9 CBM67, GH78, CBM67, GH78, GH33, CE19, GH140, GH28, GH43_18, GH92, GH95, PL1_2
PUL0190 RNA-seq, RT-PCR, qPCR pectin Bacteroides xylanisolvens <a href=https://pubmed.ncbi.nlm.nih.gov/26920945/>26920945</a>
Unraveling the pectinolytic function of Bacteroides xylanisolvens using a RNA-seq approach and mutagenesis. BMC Genomics. 2016 Feb 27;17:147. doi: 10.1186/s12864-016-2472-1.
2016 Feb 27 degradation 15 6 GH146, GH43_29, GH43_4, GH51_1, GH51_2
PUL0191 RNA-seq, RT-PCR, qPCR pectin Bacteroides xylanisolvens <a href=https://pubmed.ncbi.nlm.nih.gov/26920945/>26920945</a>
Unraveling the pectinolytic function of Bacteroides xylanisolvens using a RNA-seq approach and mutagenesis. BMC Genomics. 2016 Feb 27;17:147. doi: 10.1186/s12864-016-2472-1.
2016 Feb 27 degradation 11 5 CE12, CE8, CE8, GH105, PL1_2
PUL0192 RNA-seq, RT-PCR, qPCR pectin Bacteroides xylanisolvens <a href=https://pubmed.ncbi.nlm.nih.gov/26920945/>26920945</a>
Unraveling the pectinolytic function of Bacteroides xylanisolvens using a RNA-seq approach and mutagenesis. BMC Genomics. 2016 Feb 27;17:147. doi: 10.1186/s12864-016-2472-1.
2016 Feb 27 degradation 27 14 CE12, CE12, CE12, GH105, GH106, GH2, GH28, GH42, GH43_18, GH43_34, CBM32, PL11, PL11_1, PL26
PUL0193 RNA-seq, RT-PCR, qPCR pectin Bacteroides xylanisolvens <a href=https://pubmed.ncbi.nlm.nih.gov/26920945/>26920945</a>
Unraveling the pectinolytic function of Bacteroides xylanisolvens using a RNA-seq approach and mutagenesis. BMC Genomics. 2016 Feb 27;17:147. doi: 10.1186/s12864-016-2472-1.
2016 Feb 27 degradation 30 8 CE20, GH105, GH117, GH117, GH2, GH28, PL11
PUL0217 RNA-seq galactomannan Caldanaerobius polysaccharolyticus <a href=https://pubmed.ncbi.nlm.nih.gov/25342756/>25342756</a>
Structural and biochemical basis for mannan utilization by Caldanaerobius polysaccharolyticus strain ATCC BAA-17. J Biol Chem. 2014 Dec 12;289(50):34965-77. doi: 10.1074/jbc.M114.579904. Epub 2014 Oct 23.
2014 Dec 12 degradation 7 2 GH130_2, GH5_36
PUL0262 RNA-seq xylan Bacteroides cellulosilyticus <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>
Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20.
2013 degradation 12 6 CE1, CE6, GH95, GH10, GH5_21, GH8
PUL0263 RNA-seq xylan Bacteroides cellulosilyticus <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/30674645/>30674645</a>
Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. Wood-Derived Dietary Fibers Promote Beneficial Human Gut Microbiota. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20. mSphere. 2019 Jan 23;4(1):e00554-18. doi: 10.1128/mSphere.00554-18.
2013,2019 Jan 23 degradation 5 1 GH10
PUL0264 RNA-seq carrageenan Pseudoalteromonas distincta <a href=https://pubmed.ncbi.nlm.nih.gov/31886414/>31886414</a>
Insights into the kappa/iota-carrageenan metabolism pathway of some marine Pseudoalteromonas species. Commun Biol. 2019 Dec 19;2:474. doi: 10.1038/s42003-019-0721-y. eCollection 2019.
2019 degradation 29 4 GH16_13, GH16_17, GH167
PUL0400 RT-qPCR, RNA-seq alginate Alteromonas macleodii <a href=https://pubmed.ncbi.nlm.nih.gov/25847866/>25847866</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/30116038/>30116038</a>
Different utilization of alginate and other algal polysaccharides by marine Alteromonas macleodii ecotypes. Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides. Environ Microbiol. 2015 Oct;17(10):3857-68. doi: 10.1111/1462-2920.12862. Epub 2015 May 8. ISME J. 2019 Jan;13(1):92-103. doi: 10.1038/s41396-018-0252-4. Epub 2018 Aug 16.
2015 Oct,2019 Jan degradation 14 5 CBM32, PL7_5, PL17_2, PL17, PL6_3, PL6, PL6_1, PL7_5
PUL0401 RNA-seq beta-glucan Alteromonas macleodii <a href=https://pubmed.ncbi.nlm.nih.gov/30116038/>30116038</a>
Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides. ISME J. 2019 Jan;13(1):92-103. doi: 10.1038/s41396-018-0252-4. Epub 2018 Aug 16.
2019 Jan degradation 9 3 GH1, GH16_3, GH3
PUL0403 RNA-seq beta-glucan Alteromonas macleodii <a href=https://pubmed.ncbi.nlm.nih.gov/30116038/>30116038</a>
Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides. ISME J. 2019 Jan;13(1):92-103. doi: 10.1038/s41396-018-0252-4. Epub 2018 Aug 16.
2019 Jan degradation 4 1 GH1
PUL0404 RNA-seq pectin Alteromonas macleodii <a href=https://pubmed.ncbi.nlm.nih.gov/30116038/>30116038</a>
Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides. ISME J. 2019 Jan;13(1):92-103. doi: 10.1038/s41396-018-0252-4. Epub 2018 Aug 16.
2019 Jan degradation 18 4 CE12, CE8, GH105, GH28
PUL0405 RNA-seq pectin Alteromonas macleodii <a href=https://pubmed.ncbi.nlm.nih.gov/30116038/>30116038</a>
Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides. ISME J. 2019 Jan;13(1):92-103. doi: 10.1038/s41396-018-0252-4. Epub 2018 Aug 16.
2019 Jan degradation 4 2 PL1_2, PL1_5, PL1_5
PUL0456 microarray, RNA-seq xylan Prevotella bryantii <a href=https://pubmed.ncbi.nlm.nih.gov/20622018/>20622018</a>
Transcriptomic analyses of xylan degradation by Prevotella bryantii and insights into energy acquisition by xylanolytic bacteroidetes. J Biol Chem. 2010 Sep 24;285(39):30261-73. doi: 10.1074/jbc.M110.141788. Epub 2010 Jul 9.
2010 Sep 24 degradation 12 4 GH43_10, GH43_1, GH67, GH10
PUL0457 high-performance anion-exchange chromatography, enzyme activity assay, RNA-seq xylan Lactobacillus rossiae <a href=https://pubmed.ncbi.nlm.nih.gov/27142164/>27142164</a>
Cloning, expression and characterization of a beta-D-xylosidase from Lactobacillus rossiae DSM 15814(T). Microb Cell Fact. 2016 May 3;15:72. doi: 10.1186/s12934-016-0473-z.
2016 May 3 degradation 7 1 GH43_11, CBM91
PUL0458 RNA-seq, analysis of reaction products, enzyme activity assay carrageenan Colwellia echini <a href=https://pubmed.ncbi.nlm.nih.gov/31915221/>31915221</a>
A Multifunctional Polysaccharide Utilization Gene Cluster in Colwellia echini Encodes Enzymes for the Complete Degradation of kappa-Carrageenan, iota-Carrageenan, and Hybrid beta/kappa-Carrageenan. mSphere. 2020 Jan 8;5(1):e00792-19. doi: 10.1128/mSphere.00792-19.
2020 Jan 8 degradation 46 9 GH16_13, GH16_13, CBM16, CBM16, GH16_17, GH16_3, GH167, GH82
PUL0459 RNA-seq, analysis of reaction products, enzyme activity assay, thin-layer chromatography, liquid chromatography, mass spectrometry agarose Colwellia echini A3 <a href=https://pubmed.ncbi.nlm.nih.gov/31915221/>31915221</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/33811026/>33811026</a>
A Multifunctional Polysaccharide Utilization Gene Cluster in Colwellia echini Encodes Enzymes for the Complete Degradation of kappa-Carrageenan, iota-Carrageenan, and Hybrid beta/kappa-Carrageenan. A Novel Auxiliary Agarolytic Pathway Expands Metabolic Versatility in the Agar-Degrading Marine Bacterium Colwellia echini A3(T). mSphere. 2020 Jan 8;5(1):e00792-19. doi: 10.1128/mSphere.00792-19. Appl Environ Microbiol. 2021 May 26;87(12):e0023021. doi: 10.1128/AEM.00230-21. Epub 2021 May 26.
2020 Jan 8,2021 May 26 degradation 45 9 GH117, GH117, GH2, GH29, GH50, GH86, GH96
PUL0467 microarray, qPCR, expression of recombinant proteins, RNA-seq, differential gene expression host glycan Bacteroides thetaiotaomicron <a href=https://pubmed.ncbi.nlm.nih.gov/18996345/>18996345</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/31160824/>31160824</a>
Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Complex N-glycan breakdown by gut Bacteroides involves an extensive enzymatic apparatus encoded by multiple co-regulated genetic loci. Cell Host Microbe. 2008 Nov 13;4(5):447-57. doi: 10.1016/j.chom.2008.09.007. Nat Microbiol. 2019 Sep;4(9):1571-1581. doi: 10.1038/s41564-019-0466-x. Epub 2019 Jun 3.
2008 Nov 13,2019 Sep degradation 14 4 GH18, GH2, GH20, GH29, CBM32
PUL0529 microarray, qPCR, RNA-seq, reducing-sugar assay, growth assay pectin Bacteroides ovatus <a href=https://pubmed.ncbi.nlm.nih.gov/22205877/>22205877</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/39892338/>39892338</a>
Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. In vitro fermentation of a purified fraction of polysaccharides from the root of Brassica rapa L. by human gut microbiota and its interaction with Bacteroides ovatus. PLoS Biol. 2011 Dec;9(12):e1001221. doi: 10.1371/journal.pbio.1001221. Epub 2011 Dec 20. Food Chem. 2025 May 1;473:143109. doi: 10.1016/j.foodchem.2025.143109. Epub 2025 Jan 27.
2011 Dec,2025 May 1 degradation 27 13 CE12, CE8, CE8, GH105, GH28, GH3, GH43_10, CBM91, PL1_2
PUL0532 RNA-seq arabinan Bacteroides cellulosilyticus <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>
Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20.
2013 degradation 17 5 GH146, GH43_4, GH51_1, GH51_2
PUL0533 RNA-seq xylan Bacteroides cellulosilyticus <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>
Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20.
2013 degradation 9 3 GH10, GH115, GH30_8
PUL0534 RNA-seq pectin Bacteroides cellulosilyticus <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>
Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20.
2013 degradation 9 5 GH13_10, GH133, GH147, GH2, GH53
PUL0535 RNA-seq arabinogalactan Bacteroides cellulosilyticus <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>
Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20.
2013 degradation 9 3 CBM32, GH16_3, GH43_24, GH16_3
PUL0536 RNA-seq glycosaminoglycan Bacteroides cellulosilyticus <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>
Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20.
2013 degradation 6 1 GH2
PUL0537 RNA-seq beta-glucan Bacteroides cellulosilyticus <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>
Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20.
2013 degradation 7 3 GH157, GH3
PUL0538 RNA-seq galactomannan Bacteroides cellulosilyticus <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>
Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20.
2013 degradation 15 7 CE7, GH130_1, GH26, GH26, GH26, GH3, GH5_2, GH5_7
PUL0539 RNA-seq pectin Bacteroides cellulosilyticus <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>
Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20.
2013 degradation 16 7 CE20, GH105, GH105, GH106, GH28, PL11, PL1_2
PUL0540 RNA-seq starch Bacteroides cellulosilyticus <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>
Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20.
2013 degradation 6 3 GH13, GH97
PUL0541 RNA-seq glycosaminoglycan Bacteroides cellulosilyticus <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>
Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20.
2013 degradation 5 1 PL8_2
PUL0543 RNA-seq beta-glucan Bacteroides cellulosilyticus <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>
Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20.
2013 degradation 6 3 GH2, CBM57, GH30_3, PL38, GH88
PUL0545 RNA-seq arabinoxylan Bacteroides cellulosilyticus <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>
Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20.
2013 degradation 10 6 CE1, GH3, GH43_17, GH43_2, CBM6, GH43_7, GH43_7, GH9
PUL0546 RNA-seq arabinogalactan Bacteroides cellulosilyticus <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>
Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20.
2013 degradation 9 5 CBM13, CBM32, GH2, GH30_4, GH51_2
PUL0547 RNA-seq beta-mannan Bacteroides cellulosilyticus <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>
Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20.
2013 degradation 11 6 GH130_5, GH173, GH2, GH26, GH3
PUL0548 RNA-seq pectin Bacteroides cellulosilyticus <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>
Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20.
2013 degradation 7 3 GH28, GH92
PUL0549 RNA-seq pectin Bacteroides cellulosilyticus <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>
Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20.
2013 degradation 6 1 GH140
PUL0550 RNA-seq glycosaminoglycan Bacteroides cellulosilyticus <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>
Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20.
2013 degradation 7 3 CE8, GH3, PL1_2
PUL0551 RNA-seq beta-glucan Bacteroides cellulosilyticus <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>
Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20.
2013 degradation 6 2 GH16_3, GH3
PUL0552 RNA-seq arabinan Bacteroides cellulosilyticus <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>
Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20.
2013 degradation 7 4 CBM67, GH78, GH143, GH142, GH43_18, PL1_2
PUL0554 RNA-seq starch Bacteroides cellulosilyticus <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>
Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20.
2013 degradation 6 3 GH31, GH66, GH97
PUL0564 microarray, qPCR, UHPLC-MS, RNA-seq, RT-qPCR pectin Bacteroides thetaiotaomicron <a href=https://pubmed.ncbi.nlm.nih.gov/18996345/>18996345</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/22205877/>22205877</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/34420703/>34420703</a>
Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. Discrete genetic loci in human gut Bacteroides thetaiotaomicron confer pectin metabolism. Cell Host Microbe. 2008 Nov 13;4(5):447-57. doi: 10.1016/j.chom.2008.09.007. PLoS Biol. 2011 Dec;9(12):e1001221. doi: 10.1371/journal.pbio.1001221. Epub 2011 Dec 20. Carbohydr Polym. 2021 Nov 15;272:118534. doi: 10.1016/j.carbpol.2021.118534. Epub 2021 Aug 6.
2008 Nov 13,2011 Dec,2021 Nov 15 degradation 39 22 CE12, CE12, CE12, CE4, CE6, GH105, GH106, GH2, GH27, GH28, GH35, GH43_18, GH42, PL11_1, PL26, PL9, PL9_1
PUL0613 RNA-seq host glycan Prevotella sp. PINT <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a>
Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27.
2020 Dec 9 degradation 5 2 GH2, CBM57, PL38, GH88
PUL0614 RNA-seq pectin Prevotella sp. PINT <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a>
Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27.
2020 Dec 9 degradation 3 1 PL1_2
PUL0615 RNA-seq pectin Prevotella sp. PINT <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a>
Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27.
2020 Dec 9 degradation 7 1 GH28
PUL0616 RNA-seq pectin Prevotella sp. PINT <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a>
Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27.
2020 Dec 9 degradation 9 1 PL1_2
PUL0617 RNA-seq xylan Prevotella sp. PINT <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a>
Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27.
2020 Dec 9 degradation 14 6 GH10, GH43_1, GH43_35, GH5_21, GH67
PUL0618 RNA-seq pectin Prevotella sp. PINT <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a>
Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27.
2020 Dec 9 degradation 6 2 GH36, PL1
PUL0619 RNA-seq xylan Prevotella sp. PROD <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a>
Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27.
2020 Dec 9 degradation 5 1 GH35
PUL0620 RNA-seq xylan Prevotella sp. PROD <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a>
Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27.
2020 Dec 9 degradation 10 2 GH128, GH51_2, GH43_19
PUL0621 RNA-seq pectin Prevotella sp. PROD <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a>
Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27.
2020 Dec 9 degradation 8 4 GH133, GH3, GH57, GT4
PUL0622 RNA-seq xylan Prevotella sp. PROD <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a>
Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27.
2020 Dec 9 degradation 15 6 CE2, GH2, GH3, GH43_7, GH43_7, PL11_1
PUL0623 RNA-seq pectin Prevotella sp. PMUR <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a>
Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27.
2020 Dec 9 degradation 15 1 GH3
PUL0624 RNA-seq xylan Prevotella sp. PMUR <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a>
Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27.
2020 Dec 9 degradation 11 3 GH128, GH43_24, GH51_2, GH43_19
PUL0625 RNA-seq xylan Prevotella sp. PMUR <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a>
Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27.
2020 Dec 9 degradation 18 10 CE1, CE1, CE1, GH115, GH30_8, GH43_10, CBM91, GH43_12, CBM91, GH43_29, CBM6, GH95, GH97
PUL0653 gene deletion mutant and growth assay, complementation study, enzyme activity assay, RNA-seq, electrophoretic mobility shift assay agarose Streptomyces coelicolor A3(2) <a href=https://pubmed.ncbi.nlm.nih.gov/33889146/>33889146</a>
LacI-Family Transcriptional Regulator DagR Acts as a Repressor of the Agarolytic Pathway Genes in Streptomyces coelicolor A3(2). Front Microbiol. 2021 Apr 6;12:658657. doi: 10.3389/fmicb.2021.658657. eCollection 2021.
2021 degradation 17 4 GH117, GH117, GH16_16, GH2, GH50
PUL0665 UHPLC-MS, RNA-seq, RT-qPCR pectin Bacteroides thetaiotaomicron VPI-5482 <a href=https://pubmed.ncbi.nlm.nih.gov/34420703/>34420703</a>
Discrete genetic loci in human gut Bacteroides thetaiotaomicron confer pectin metabolism. Carbohydr Polym. 2021 Nov 15;272:118534. doi: 10.1016/j.carbpol.2021.118534. Epub 2021 Aug 6.
2021 Nov 15 degradation 8 2 GH18, GH30_4
PUL0666 UHPLC-MS, RNA-seq, RT-qPCR pectin Bacteroides thetaiotaomicron VPI-5482 <a href=https://pubmed.ncbi.nlm.nih.gov/34420703/>34420703</a>
Discrete genetic loci in human gut Bacteroides thetaiotaomicron confer pectin metabolism. Carbohydr Polym. 2021 Nov 15;272:118534. doi: 10.1016/j.carbpol.2021.118534. Epub 2021 Aug 6.
2021 Nov 15 degradation 4 4 GH35, GH43_19, GH43_9, CBM91, GH43_19, GH51_2
PUL0667 UHPLC-MS, RNA-seq, RT-qPCR pectin Bacteroides thetaiotaomicron VPI-5482 <a href=https://pubmed.ncbi.nlm.nih.gov/34420703/>34420703</a>
Discrete genetic loci in human gut Bacteroides thetaiotaomicron confer pectin metabolism. Carbohydr Polym. 2021 Nov 15;272:118534. doi: 10.1016/j.carbpol.2021.118534. Epub 2021 Aug 6.
2021 Nov 15 degradation 4 0 NA
PUL0674 microarray, enzyme activity assay, high-performance anion-exchange chromatography, mass spectrometry, RNA-seq, affinity gel electrophoresis, carbohydrate binding assay, microscale thermophoresis beta-glucan Bacteroides ovatus ATCC 8483 <a href=https://pubmed.ncbi.nlm.nih.gov/34817219/>34817219</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/29020628/>29020628</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/22205877/>22205877</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/32801182/>32801182</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/31062073/>31062073</a>
Mapping Molecular Recognition of beta1,3-1,4-Glucans by a Surface Glycan-Binding Protein from the Human Gut Symbiont Bacteroides ovatus. Molecular Mechanism by which Prominent Human Gut Bacteroidetes Utilize Mixed-Linkage Beta-Glucans, Major Health-Promoting Cereal Polysaccharides. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. Sharing a beta-Glucan Meal: Transcriptomic Eavesdropping on a Bacteroides ovatus-Subdoligranulum variabile-Hungatella hathewayi Consortium. Surface glycan-binding proteins are essential for cereal beta-glucan utilization by the human gut symbiont Bacteroides ovatus. Microbiol Spectr. 2021 Dec 22;9(3):e0182621. doi: 10.1128/Spectrum.01826-21. Epub 2021 Nov 24. Cell Rep. 2017 Oct 10;21(2):417-430. doi: 10.1016/j.celrep.2017.09.049. PLoS Biol. 2011 Dec;9(12):e1001221. doi: 10.1371/journal.pbio.1001221. Epub 2011 Dec 20. Appl Environ Microbiol. 2020 Oct 1;86(20):e01651-20. doi: 10.1128/AEM.01651-20. Print 2020 Oct 1. Cell Mol Life Sci. 2019 Nov;76(21):4319-4340. doi: 10.1007/s00018-019-03115-3. Epub 2019 May 6.
2021 Dec 22,2017 Oct 10,2011 Dec,2020 Oct 1,2019 Nov degradation 8 3 GH16_3, GH3
PUL0678 RNA-seq, thin-layer chromatography, growth assay inulin Lactiplantibacillus plantarum QS7T <a href=https://pubmed.ncbi.nlm.nih.gov/34980384/>34980384</a>
Global genome and comparative transcriptomic analysis reveal the inulin consumption strategy of Lactiplantibacillus plantarum QS7T. Food Res Int. 2022 Jan;151:110846. doi: 10.1016/j.foodres.2021.110846. Epub 2021 Dec 2.
2022 Jan degradation 5 2 GH32, GH36
PUL0679 RNA-seq, thin-layer chromatography, growth assay inulin Lactiplantibacillus plantarum QS7T <a href=https://pubmed.ncbi.nlm.nih.gov/34980384/>34980384</a>
Global genome and comparative transcriptomic analysis reveal the inulin consumption strategy of Lactiplantibacillus plantarum QS7T. Food Res Int. 2022 Jan;151:110846. doi: 10.1016/j.foodres.2021.110846. Epub 2021 Dec 2.
2022 Jan degradation 7 1 GH32
PUL0687 growth assay, RNA-seq xylooligosaccharide Bacteroides vulgatus ATCC 8482 <a href=https://pubmed.ncbi.nlm.nih.gov/36043703/>36043703</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/27573446/>27573446</a>
Structural and Biochemical Characterization of a Nonbinding SusD-Like Protein Involved in Xylooligosaccharide Utilization by an Uncultured Human Gut Bacteroides Strain. Functional characterization of a gene locus from an uncultured gut Bacteroides conferring xylo-oligosaccharides utilization to Escherichia coli. mSphere. 2022 Oct 26;7(5):e0024422. doi: 10.1128/msphere.00244-22. Epub 2022 Aug 31. Mol Microbiol. 2016 Nov;102(4):579-592. doi: 10.1111/mmi.13480. Epub 2016 Sep 14.
2022 Oct 26,2016 Nov degradation 7 3 GH10, GH43_1, GH43_12, CBM91
PUL0706 RNA-seq, growth assay agar Pseudoalteromonas atlantica T6c <a href=https://pubmed.ncbi.nlm.nih.gov/37265394/>37265394</a>
Constructing Marine Bacterial Metabolic Chassis for Potential Biorefinery of Red Algal Biomass and Agaropectin Wastes. ACS Synth Biol. 2023 Jun 16;12(6):1782-1793. doi: 10.1021/acssynbio.3c00063. Epub 2023 Jun 2.
2023 Jun 16 degradation 43 15 CE20, CE20, GH117, GH117, GH140, GH16_12, GH16_14, GH2, GH29, GH3, GH43_12, CBM91, GH43_2, CBM6, GH86
PUL0707 RNA-seq, growth assay agar Pseudoalteromonas atlantica T6c <a href=https://pubmed.ncbi.nlm.nih.gov/37265394/>37265394</a>
Constructing Marine Bacterial Metabolic Chassis for Potential Biorefinery of Red Algal Biomass and Agaropectin Wastes. ACS Synth Biol. 2023 Jun 16;12(6):1782-1793. doi: 10.1021/acssynbio.3c00063. Epub 2023 Jun 2.
2023 Jun 16 degradation 46 4 AA2, GH117, GH117, GH13_13, GH50
PUL0708 RNA-seq, growth assay agar Pseudoalteromonas atlantica T6c <a href=https://pubmed.ncbi.nlm.nih.gov/37265394/>37265394</a>
Constructing Marine Bacterial Metabolic Chassis for Potential Biorefinery of Red Algal Biomass and Agaropectin Wastes. ACS Synth Biol. 2023 Jun 16;12(6):1782-1793. doi: 10.1021/acssynbio.3c00063. Epub 2023 Jun 2.
2023 Jun 16 degradation 41 5 CE1, GH13_38, GH31, GH86
PUL0709 RNA-seq, growth assay agar Pseudoalteromonas atlantica T6c <a href=https://pubmed.ncbi.nlm.nih.gov/37265394/>37265394</a>
Constructing Marine Bacterial Metabolic Chassis for Potential Biorefinery of Red Algal Biomass and Agaropectin Wastes. ACS Synth Biol. 2023 Jun 16;12(6):1782-1793. doi: 10.1021/acssynbio.3c00063. Epub 2023 Jun 2.
2023 Jun 16 degradation 29 0 NA
PUL0710 RNA-seq, growth assay, liquid chromatography and mass spectrometry, gene mutant, mice colonization with mutant mucin Akkermansia muciniphila ATCC BAA-835 <a href=https://pubmed.ncbi.nlm.nih.gov/37337046/>37337046</a>
A genetic system for Akkermansia muciniphila reveals a role for mucin foraging in gut colonization and host sterol biosynthesis gene expression. Nat Microbiol. 2023 Aug;8(8):1450-1467. doi: 10.1038/s41564-023-01407-w. Epub 2023 Jun 19.
2023 Aug degradation 8 0 NA
PUL0711 RNA-seq, growth assay, liquid chromatography and mass spectrometry, gene mutant, mice colonization with mutant mucin Akkermansia muciniphila ATCC BAA-835 <a href=https://pubmed.ncbi.nlm.nih.gov/37337046/>37337046</a>
A genetic system for Akkermansia muciniphila reveals a role for mucin foraging in gut colonization and host sterol biosynthesis gene expression. Nat Microbiol. 2023 Aug;8(8):1450-1467. doi: 10.1038/s41564-023-01407-w. Epub 2023 Jun 19.
2023 Aug degradation 5 0 NA
PUL0712 growth assay, RNA-seq, qPCR pectic polysaccharide Bacteroides thetaiotaomicron VPI-5482 <a href=https://pubmed.ncbi.nlm.nih.gov/37451376/>37451376</a>
A pectic polysaccharide isolated from Achyranthes bidentata is metabolized by human gut Bacteroides spp. Int J Biol Macromol. 2023 Sep 1;248:125785. doi: 10.1016/j.ijbiomac.2023.125785. Epub 2023 Jul 13.
2023 Sep 1 degradation 10 0 NA
PUL0713 growth assay, RNA-seq, qPCR pectic polysaccharide Bacteroides thetaiotaomicron VPI-5482 <a href=https://pubmed.ncbi.nlm.nih.gov/37451376/>37451376</a>
A pectic polysaccharide isolated from Achyranthes bidentata is metabolized by human gut Bacteroides spp. Int J Biol Macromol. 2023 Sep 1;248:125785. doi: 10.1016/j.ijbiomac.2023.125785. Epub 2023 Jul 13.
2023 Sep 1 degradation 4 0 NA
PUL0719 RNA-seq, growth assay starch Xanthomonas citri pv. citri str. 306 <a href=https://pubmed.ncbi.nlm.nih.gov/37855631/>37855631</a>
Plant structural and storage glucans trigger distinct transcriptional responses that modulate the motility of Xanthomonas pathogens. Microbiol Spectr. 2023 Dec 12;11(6):e0228023. doi: 10.1128/spectrum.02280-23. Epub 2023 Oct 19.
2023 Dec 12 degradation 7 3 GH13_2, GH13_23, GH97
PUL0721 RNA-seq, RT-qPCR, gene deletion mutant and growth assay human milk oligosaccharide Phocaeicola dorei strain DSM 17855 <a href=https://pubmed.ncbi.nlm.nih.gov/38167825/>38167825</a>
CRISPR-Cas-based identification of a sialylated human milk oligosaccharides utilization cluster in the infant gut commensal Bacteroides dorei. Nat Commun. 2024 Jan 2;15(1):105. doi: 10.1038/s41467-023-44437-y.
2024 Jan 2 degradation 13 9 CBM93, GH33, CE3, CE20, CE9, GH2, GH20, GH92
PUL0722 RNA-seq, mass spectrometry, SDS-PAGE, isothermal titration calorimetry (ITC), high-performance anion-exchange chromatography, enzyme kinetic analysis, thin-layer chromatography xylan Polaribacter sp. Q13 <a href=https://pubmed.ncbi.nlm.nih.gov/38169280/>38169280</a>
The catabolic specialization of the marine bacterium Polaribacter sp. Q13 to red algal beta1,3/1,4-mixed-linkage xylan. Appl Environ Microbiol. 2024 Jan 24;90(1):e0170423. doi: 10.1128/aem.01704-23. Epub 2024 Jan 3.
2024 Jan 24 degradation 30 9 CBM4, CBM4, GH10, GH26, GH3, GH43_1, GH43_12, CBM91
PUL0736 RNA-seq, RT-qPCR, enzyme activity assay, thin-layer chromatography, Western Blot, recombinant protein expression, DSS-induced mouse colitis model alginate Bacteroides clarus YIT 12056 <a href=https://pubmed.ncbi.nlm.nih.gov/38563787/>38563787</a>
Alginate oligosaccharide assimilation by gut microorganisms and the potential role in gut inflammation alleviation. Appl Environ Microbiol. 2024 May 21;90(5):e0004624. doi: 10.1128/aem.00046-24. Epub 2024 Apr 2.
2024 May 21 degradation 10 3 CE20, PL17_2, PL17, PL6, PL6_1
PUL0740 RNA-seq, ion chromatography, HPLC, growth assay human milk oligosaccharide Bifidobacterium longum subsp. infantis ATCC 15697 <a href=https://pubmed.ncbi.nlm.nih.gov/32985563/>32985563</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/31489370/>31489370</a>
Strain-specific strategies of 2'-fucosyllactose, 3-fucosyllactose, and difucosyllactose assimilation by Bifidobacterium longum subsp. infantis Bi-26 and ATCC 15697. Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacteria-infant symbiosis. Sci Rep. 2020 Sep 28;10(1):15919. doi: 10.1038/s41598-020-72792-z. Sci Adv. 2019 Aug 28;5(8):eaaw7696. doi: 10.1126/sciadv.aaw7696. eCollection 2019 Aug.
2020 Sep 28,2019 Aug degradation 3 0 NA
PUL0741 RNA-seq, ion chromatography, HPLC, growth assay human milk oligosaccharide Bifidobacterium longum subsp. infantis ATCC 15697 <a href=https://pubmed.ncbi.nlm.nih.gov/32985563/>32985563</a>
Strain-specific strategies of 2'-fucosyllactose, 3-fucosyllactose, and difucosyllactose assimilation by Bifidobacterium longum subsp. infantis Bi-26 and ATCC 15697. Sci Rep. 2020 Sep 28;10(1):15919. doi: 10.1038/s41598-020-72792-z.
2020 Sep 28 degradation 7 0 NA
PUL0742 gene deletion and growth assay, recombinant protein expression, crystallization, isothermal titration calorimetry (ITC), RNA-seq, ion chromatography, HPLC, growth assay human milk oligosaccharide Bifidobacterium longum subsp. infantis ATCC 15697 <a href=https://pubmed.ncbi.nlm.nih.gov/32985563/>32985563</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/31489370/>31489370</a>
Strain-specific strategies of 2'-fucosyllactose, 3-fucosyllactose, and difucosyllactose assimilation by Bifidobacterium longum subsp. infantis Bi-26 and ATCC 15697. Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacteria-infant symbiosis. Sci Rep. 2020 Sep 28;10(1):15919. doi: 10.1038/s41598-020-72792-z. Sci Adv. 2019 Aug 28;5(8):eaaw7696. doi: 10.1126/sciadv.aaw7696. eCollection 2019 Aug.
2020 Sep 28,2019 Aug degradation 5 1 GH151
PUL0744 RNA-seq, HPLC, gene mutant, differential gene expression lactose Listeria monocytogenes serotype 4b str. F2365 <a href=https://pubmed.ncbi.nlm.nih.gov/38876592/>38876592</a>
Activation of a silent lactose utilization pathway in an evolved Listeria monocytogenes F2365 outbreak isolate. Food Res Int. 2024 Aug;189:114554. doi: 10.1016/j.foodres.2024.114554. Epub 2024 May 27.
2024 Aug degradation 5 1 GH1
PUL0745 high performance gel permeation chromatography, gas chromatography, RNA-seq, differential gene expression pectic polysaccharide Bacteroides ovatus strain ATCC 8483 <a href=https://pubmed.ncbi.nlm.nih.gov/38890895/>38890895</a>
The Utilization by Bacteroides spp. of a Purified Polysaccharide from Fuzhuan Brick Tea. Foods. 2024 May 26;13(11):1666. doi: 10.3390/foods13111666.
2024 May 26 degradation 12 4 GH146, GH28, GH30_2, PL12
PUL0746 high performance gel permeation chromatography, gas chromatography, RNA-seq, differential gene expression pectic polysaccharide Bacteroides ovatus strain ATCC 8483 <a href=https://pubmed.ncbi.nlm.nih.gov/38890895/>38890895</a>
The Utilization by Bacteroides spp. of a Purified Polysaccharide from Fuzhuan Brick Tea. Foods. 2024 May 26;13(11):1666. doi: 10.3390/foods13111666.
2024 May 26 degradation 7 4 CBM93, GH33, GH2, GH20, GH20, CBM32
PUL0747 high performance gel permeation chromatography, gas chromatography, RNA-seq, differential gene expression pectic polysaccharide Bacteroides ovatus strain ATCC 8483 <a href=https://pubmed.ncbi.nlm.nih.gov/38890895/>38890895</a>
The Utilization by Bacteroides spp. of a Purified Polysaccharide from Fuzhuan Brick Tea. Foods. 2024 May 26;13(11):1666. doi: 10.3390/foods13111666.
2024 May 26 degradation 9 3 GH2, GH20, GH29, CBM32
PUL0750 RNA-seq, BCA assay, pNP glycoside assay, HPAEC-PAD, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography beta-glucan Segatella copri DSM 18205 <a href=https://pubmed.ncbi.nlm.nih.gov/39122003/>39122003</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a>
The molecular basis of cereal mixed-linkage beta-glucan utilization by the human gut bacterium Segatella copri. Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. J Biol Chem. 2024 Sep;300(9):107625. doi: 10.1016/j.jbc.2024.107625. Epub 2024 Aug 8. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5.
2024 Sep,2025 Jan 31 degradation 11 3 GH3, GH5_4, GH94
PUL0756 RNA-seq, qRT-PCR N-glycan Barnesiella intestinihominis <a href=https://pubmed.ncbi.nlm.nih.gov/39510934/>39510934</a>
Molecular mechanisms of complex-type N-glycan breakdown and metabolism by the human intestinal bacterium Barnesiella intestinihominis. J Biosci Bioeng. 2025 Jan;139(1):14-22. doi: 10.1016/j.jbiosc.2024.10.006. Epub 2024 Nov 7.
2025 Jan degradation 11 7 GH130_2, GH20, GH84, CBM32, GH85, GH92
PUL0757 RNA-seq, qRT-PCR N-glycan Barnesiella intestinihominis <a href=https://pubmed.ncbi.nlm.nih.gov/39510934/>39510934</a>
Molecular mechanisms of complex-type N-glycan breakdown and metabolism by the human intestinal bacterium Barnesiella intestinihominis. J Biosci Bioeng. 2025 Jan;139(1):14-22. doi: 10.1016/j.jbiosc.2024.10.006. Epub 2024 Nov 7.
2025 Jan degradation 5 1 GH85
PUL0758 RNA-seq, qRT-PCR N-glycan Barnesiella intestinihominis <a href=https://pubmed.ncbi.nlm.nih.gov/39510934/>39510934</a>
Molecular mechanisms of complex-type N-glycan breakdown and metabolism by the human intestinal bacterium Barnesiella intestinihominis. J Biosci Bioeng. 2025 Jan;139(1):14-22. doi: 10.1016/j.jbiosc.2024.10.006. Epub 2024 Nov 7.
2025 Jan degradation 3 1 GH85
PUL0759 RNA-seq, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography Hemicellulose Segatella copri DSM 18205 <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a>
Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5.
2025 Jan 31 degradation 3 2 GH2, GH31_4
PUL0760 RNA-seq, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography Hemicellulose Segatella copri DSM 18205 <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a>
Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5.
2025 Jan 31 degradation 7 3 GH5_4, GH5_7
PUL0761 RNA-seq, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography Hemicellulose Segatella copri DSM 18205 <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a>
Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5.
2025 Jan 31 degradation 10 4 GH10, GH35, GH43_1, GH67
PUL0762 RNA-seq, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography Hemicellulose Segatella copri DSM 18205 <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a>
Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5.
2025 Jan 31 degradation 9 3 GH10, GH43_12, CBM91, GH5_21
PUL0763 RNA-seq, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography Hemicellulose Segatella copri DSM 18205 <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a>
Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5.
2025 Jan 31 degradation 5 3 CE6, CE1, GH31_4, GH43_2, CBM6, GH8
PUL0764 RNA-seq, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography Hemicellulose Segatella copri DSM 18205 <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a>
Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5.
2025 Jan 31 degradation 4 4 GH43_10, CBM91, GH43_29, CBM6, GH43_29, CBM6, GH43_10, CBM91, GH95
PUL0765 RNA-seq, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography inulin Segatella copri DSM 18205 <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a>
Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5.
2025 Jan 31 degradation 10 1 GH32
PUL0766 RNA-seq, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography starch Segatella copri DSM 18205 <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a>
Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5.
2025 Jan 31 degradation 5 2 GH13_44, GH97
PUL0767 RNA-seq, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography pectin Segatella copri DSM 18205 <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a>
Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5.
2025 Jan 31 degradation 15 6 CE8, GH28, GH28, GH105, GH43_10, CBM91, GH95, PL1_2
PUL0768 RNA-seq, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography pectin Segatella copri DSM 18205 <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a>
Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5.
2025 Jan 31 degradation 7 3 GH2, GH53, PL1, CBM77
PUL0769 RNA-seq, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography pectin Segatella copri DSM 18205 <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a>
Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5.
2025 Jan 31 degradation 9 3 GH43_4, GH43_5, GH51_2
PUL0770 RNA-seq, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography pectin Segatella copri DSM 18205 <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a>
Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5.
2025 Jan 31 degradation 8 1 GH51_1
PUL0771 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Rhodopirellula sp. SWK7 <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 27 7 GH141, GH168, GH29
PUL0772 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Rhodopirellula sp. SWK7 <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 9 1 GH29
PUL0773 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Rhodopirellula sp. SWK7 <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 23 3 GH116, GH29, GH97
PUL0774 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Rhodopirellula sp. SWK7 <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 23 8 GH117, GH141, GH168, GH29, GH95
PUL0775 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Rhodopirellula sp. SWK7 <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 14 5 CE14, GH128, GH141, GH29
PUL0776 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Rhodopirellula sp. SWK7 <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 32 10 CE19, CBM51, CE20, GH115, GH116, GH117, GH117, GH29, GH95
PUL0777 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Neorhodopirellula lusitana <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 26 3 GH141, GH29
PUL0778 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Neorhodopirellula lusitana <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 18 4 GH172, GH29, GH3, GH95
PUL0779 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Neorhodopirellula lusitana <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 19 9 GH107, GH141, GH168, GH29
PUL0780 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Neorhodopirellula lusitana <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 24 8 CBM32, CE12, CE6, GH141, GH29, GH95
PUL0781 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Neorhodopirellula lusitana <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 17 4 GH116, GH29, GH95
PUL0782 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Neorhodopirellula lusitana <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 15 3 GH109, GH117, GH29
PUL0783 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Neorhodopirellula lusitana <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 20 6 CBM51, GH115, GH172, GH28, GH29, GH95
PUL0784 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Neorhodopirellula lusitana <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 8 2 GH29, GH95
PUL0785 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Neorhodopirellula lusitana <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 22 5 CE20, CE20, GH95, CE7, GH117, GH168
PUL0786 RNA-seq, reducing-sugar assay, growth assay, high performance gel permeation chromatography, gas chromatography, RNA-seq, differential gene expression pectic polysaccharide Bacteroides ovatus strain ATCC 8483 <a href=https://pubmed.ncbi.nlm.nih.gov/38890895/>38890895</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/39892338/>39892338</a>
The Utilization by Bacteroides spp. of a Purified Polysaccharide from Fuzhuan Brick Tea. In vitro fermentation of a purified fraction of polysaccharides from the root of Brassica rapa L. by human gut microbiota and its interaction with Bacteroides ovatus. Foods. 2024 May 26;13(11):1666. doi: 10.3390/foods13111666. Food Chem. 2025 May 1;473:143109. doi: 10.1016/j.foodchem.2025.143109. Epub 2025 Jan 27.
2024 May 26,2025 May 1 degradation 26 14 CBM67, GH78, CBM67, GH78, GH33, CE19, GH105, GH130_2, GH140, GH143, GH142, GH163, GH18, GH28, GH43_18, GH92, GH95, PL1_2
PUL0787 RNA-seq, reducing-sugar assay, growth assay pectic polysaccharide Bacteroides ovatus strain ATCC 8483 <a href=https://pubmed.ncbi.nlm.nih.gov/39892338/>39892338</a>
In vitro fermentation of a purified fraction of polysaccharides from the root of Brassica rapa L. by human gut microbiota and its interaction with Bacteroides ovatus. Food Chem. 2025 May 1;473:143109. doi: 10.1016/j.foodchem.2025.143109. Epub 2025 Jan 27.
2025 May 1 degradation 31 16 CE12, CE12, CE12, CE4, GH105, GH106, GH2, GH28, GH42, GH43_18, GH43_34, PL11_1, PL26
PUL0788 RNA-seq, reducing-sugar assay, growth assay pectic polysaccharide Bacteroides ovatus strain ATCC 8483 <a href=https://pubmed.ncbi.nlm.nih.gov/39892338/>39892338</a>
In vitro fermentation of a purified fraction of polysaccharides from the root of Brassica rapa L. by human gut microbiota and its interaction with Bacteroides ovatus. Food Chem. 2025 May 1;473:143109. doi: 10.1016/j.foodchem.2025.143109. Epub 2025 Jan 27.
2025 May 1 degradation 26 8 CE20, GH105, GH2, GH28, PL11, PL1_2, PL9_1
PUL0789 RNA-seq, reducing-sugar assay, growth assay pectic polysaccharide Bacteroides ovatus strain ATCC 8483 <a href=https://pubmed.ncbi.nlm.nih.gov/39892338/>39892338</a>
In vitro fermentation of a purified fraction of polysaccharides from the root of Brassica rapa L. by human gut microbiota and its interaction with Bacteroides ovatus. Food Chem. 2025 May 1;473:143109. doi: 10.1016/j.foodchem.2025.143109. Epub 2025 Jan 27.
2025 May 1 degradation 9 2 CBM6, GH28
PUL0790 RNA-seq, reducing-sugar assay, growth assay pectic polysaccharide Bacteroides ovatus strain ATCC 8483 <a href=https://pubmed.ncbi.nlm.nih.gov/39892338/>39892338</a>
In vitro fermentation of a purified fraction of polysaccharides from the root of Brassica rapa L. by human gut microbiota and its interaction with Bacteroides ovatus. Food Chem. 2025 May 1;473:143109. doi: 10.1016/j.foodchem.2025.143109. Epub 2025 Jan 27.
2025 May 1 degradation 3 3 GH127, GH141, GH78
PUL0791 RNA-seq, reducing-sugar assay, growth assay pectic polysaccharide Bacteroides ovatus strain ATCC 8483 <a href=https://pubmed.ncbi.nlm.nih.gov/39892338/>39892338</a>
In vitro fermentation of a purified fraction of polysaccharides from the root of Brassica rapa L. by human gut microbiota and its interaction with Bacteroides ovatus. Food Chem. 2025 May 1;473:143109. doi: 10.1016/j.foodchem.2025.143109. Epub 2025 Jan 27.
2025 May 1 degradation 6 5 CE20, GH106, GH139, GH2, PL1_2
PUL0792 enzyme activity assay, recombinant protein expression, RNA-seq xylan Bifidobacterium pseudocatenulatum strain YIT11952 <a href=https://pubmed.ncbi.nlm.nih.gov/37938239/>37938239</a>
Xylan utilisation promotes adaptation of Bifidobacterium pseudocatenulatum to the human gastrointestinal tract. ISME Commun. 2021 Oct 28;1(1):62. doi: 10.1038/s43705-021-00066-4.
2021 Oct 28 degradation 15 5 CE20, GH10, CBM9, GH120, GH43_11, CBM91, GH8
PUL0793 enzyme activity assay, quantification of reaction product reducing ends, RNA-seq, differential gene expression, NMR, MALDI-TOF/MS, gas chromatography, mass spectrometry, bicinchoninic acid (BCA) assay, recombinant protein expression arabinan Bacteroides intestinalis DSM 17393 <a href=https://pubmed.ncbi.nlm.nih.gov/39443715/>39443715</a>
In vivo manipulation of human gut Bacteroides fitness by abiotic oligosaccharides. Nat Chem Biol. 2025 Apr;21(4):544-554. doi: 10.1038/s41589-024-01763-6. Epub 2024 Oct 23.
2025 Apr degradation 14 6 CE1, GH127, GH146, GH43_34, CBM32, GH97
PUL0794 enzyme activity assay, quantification of reaction product reducing ends, RNA-seq, differential gene expression, NMR, MALDI-TOF/MS, gas chromatography, mass spectrometry, bicinchoninic acid (BCA) assay, recombinant protein expression arabinan Bacteroides intestinalis DSM 17393 <a href=https://pubmed.ncbi.nlm.nih.gov/39443715/>39443715</a>
In vivo manipulation of human gut Bacteroides fitness by abiotic oligosaccharides. Nat Chem Biol. 2025 Apr;21(4):544-554. doi: 10.1038/s41589-024-01763-6. Epub 2024 Oct 23.
2025 Apr degradation 23 8 GH146, GH28, GH43_29, GH43_4, GH51_1, GH51_2, GH97
PUL0795 RNA-seq, recombinant protein expression, growth assay xyloglucan Flavobacterium johnsoniae UW101 <a href=https://pubmed.ncbi.nlm.nih.gov/39913342/>39913342</a>
Metabolism of hemicelluloses by root-associated Bacteroidota species. ISME J. 2025 Jan 2;19(1):wraf022. doi: 10.1093/ismejo/wraf022.
2025 Jan 2 degradation 12 8 CE20, CE20, GH2, GH3, GH31_3, GH39, GH5_4, GH95, GH97