| PULID | Characterization Method(s) | Substrate | Organism | Publication | Publish Date | Type | Num Genes | Num CAZymes | CazyFamily |
|---|---|---|---|---|---|---|---|---|---|
| PUL0001 | RNA-seq, substrate binding assay, enzyme activity assay, mass spectrometry | beta-mannan | Roseburia intestinalis | <a href=https://pubmed.ncbi.nlm.nih.gov/30796211/>30796211</a> The human gut Firmicute Roseburia intestinalis is a primary degrader of dietary beta-mannans. Nat Commun. 2019 Feb 22;10(1):905. doi: 10.1038/s41467-019-08812-y. |
2019 Feb 22 | degradation | 15 | 9 | CE17, CBM35inCE17, CE2, GH1, GH113, GH130_1, GH130_2, GH36 |
| PUL0026 | qPCR, Western Blot, RNA-seq, enzyme activity assay | ribose | Bacteroides thetaiotaomicron | <a href=https://pubmed.ncbi.nlm.nih.gov/31901520/>31901520</a> A Ribose-Scavenging System Confers Colonization Fitness on the Human Gut Symbiont Bacteroides thetaiotaomicron in a Diet-Specific Manner. Cell Host Microbe. 2020 Jan 8;27(1):79-92.e9. doi: 10.1016/j.chom.2019.11.009. Epub 2019 Dec 31. |
2020 Jan 8 | degradation | 8 | 1 | GH35 |
| PUL0031 | RNA-seq | starch | Bifidobacterium longum | <a href=https://pubmed.ncbi.nlm.nih.gov/16523284/>16523284</a> A functional analysis of the Bifidobacterium longum cscA and scrP genes in sucrose utilization. Appl Microbiol Biotechnol. 2006 Oct;72(5):975-81. doi: 10.1007/s00253-006-0358-x. Epub 2006 Mar 8. |
2006 Oct | degradation | 3 | 1 | GH32 |
| PUL0032 | RNA-seq | starch | Bifidobacterium longum | <a href=https://pubmed.ncbi.nlm.nih.gov/16523284/>16523284</a> A functional analysis of the Bifidobacterium longum cscA and scrP genes in sucrose utilization. Appl Microbiol Biotechnol. 2006 Oct;72(5):975-81. doi: 10.1007/s00253-006-0358-x. Epub 2006 Mar 8. |
2006 Oct | degradation | 3 | 1 | GH13_18 |
| PUL0048 | RNA-seq | trehalose | Streptococcus mutans | <a href=https://pubmed.ncbi.nlm.nih.gov/29632089/>29632089</a> Characterization of the Trehalose Utilization Operon in Streptococcus mutans Reveals that the TreR Transcriptional Regulator Is Involved in Stress Response Pathways and Toxin Production. J Bacteriol. 2018 May 24;200(12):e00057-18. doi: 10.1128/JB.00057-18. Print 2018 Jun 15. |
2018 Jun 15 | degradation | 3 | 1 | GH13_29 |
| PUL0099 | RNA-seq, substrate binding assay, enzyme activity assay, mass spectrometry | beta-mannan | Roseburia intestinalis | <a href=https://pubmed.ncbi.nlm.nih.gov/30796211/>30796211</a> The human gut Firmicute Roseburia intestinalis is a primary degrader of dietary beta-mannans. Nat Commun. 2019 Feb 22;10(1):905. doi: 10.1038/s41467-019-08812-y. |
2019 Feb 22 | degradation | 3 | 3 | CBM27, GH26, CBM23, GH3 |
| PUL0115 | expression of recombinant proteins, RNA-seq, differential gene expression | host glycan | Bacteroides thetaiotaomicron | <a href=https://pubmed.ncbi.nlm.nih.gov/31160824/>31160824</a> Complex N-glycan breakdown by gut Bacteroides involves an extensive enzymatic apparatus encoded by multiple co-regulated genetic loci. Nat Microbiol. 2019 Sep;4(9):1571-1581. doi: 10.1038/s41564-019-0466-x. Epub 2019 Jun 3. |
2019 Sep | degradation | 7 | 7 | CBM93, GH33, CE3, CE20, GH2, GH20, GH20, CBM32 |
| PUL0116 | expression of recombinant proteins, RNA-seq, differential gene expression | host glycan | Bacteroides thetaiotaomicron | <a href=https://pubmed.ncbi.nlm.nih.gov/31160824/>31160824</a> Complex N-glycan breakdown by gut Bacteroides involves an extensive enzymatic apparatus encoded by multiple co-regulated genetic loci. Nat Microbiol. 2019 Sep;4(9):1571-1581. doi: 10.1038/s41564-019-0466-x. Epub 2019 Jun 3. |
2019 Sep | degradation | 2 | 1 | GH20 |
| PUL0117 | expression of recombinant proteins, RNA-seq, differential gene expression, enzyme specificity assay, enzyme activity assay | host glycan | Bacteroides thetaiotaomicron | <a href=https://pubmed.ncbi.nlm.nih.gov/31160824/>31160824</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/23943617/>23943617</a> Complex N-glycan breakdown by gut Bacteroides involves an extensive enzymatic apparatus encoded by multiple co-regulated genetic loci. Discovery of beta-1,4-D-mannosyl-N-acetyl-D-glucosamine phosphorylase involved in the metabolism of N-glycans. Nat Microbiol. 2019 Sep;4(9):1571-1581. doi: 10.1038/s41564-019-0466-x. Epub 2019 Jun 3. J Biol Chem. 2013 Sep 20;288(38):27366-27374. doi: 10.1074/jbc.M113.469080. Epub 2013 Aug 13. |
2019 Sep,2013 Sep 20 | degradation | 22 | 7 | GH130_2, GH163, GH18, GH20, GH92 |
| PUL0120 | expression of recombinant proteins, RNA-seq, differential gene expression | host glycan | Bacteroides thetaiotaomicron | <a href=https://pubmed.ncbi.nlm.nih.gov/31160824/>31160824</a> Complex N-glycan breakdown by gut Bacteroides involves an extensive enzymatic apparatus encoded by multiple co-regulated genetic loci. Nat Microbiol. 2019 Sep;4(9):1571-1581. doi: 10.1038/s41564-019-0466-x. Epub 2019 Jun 3. |
2019 Sep | degradation | 6 | 1 | GH18 |
| PUL0153 | RNA-seq | human milk oligosaccharide | Lactobacillus rhamnosus | <a href=https://pubmed.ncbi.nlm.nih.gov/30332787/>30332787</a> Prebiotics for Lactose Intolerance: Variability in Galacto-Oligosaccharide Utilization by Intestinal Lactobacillus rhamnosus. Nutrients. 2018 Oct 16;10(10):1517. doi: 10.3390/nu10101517. |
2018 Oct 16 | degradation | 3 | 1 | GH1 |
| PUL0154 | RNA-seq, differential gene expression | human milk oligosaccharide | Lactobacillus rhamnosus | <a href=https://pubmed.ncbi.nlm.nih.gov/30332787/>30332787</a> Prebiotics for Lactose Intolerance: Variability in Galacto-Oligosaccharide Utilization by Intestinal Lactobacillus rhamnosus. Nutrients. 2018 Oct 16;10(10):1517. doi: 10.3390/nu10101517. |
2018 Oct 16 | degradation | 3 | 1 | GH1 |
| PUL0156 | RNA-seq, differential gene expression | human milk oligosaccharide | Lactobacillus rhamnosus | <a href=https://pubmed.ncbi.nlm.nih.gov/30332787/>30332787</a> Prebiotics for Lactose Intolerance: Variability in Galacto-Oligosaccharide Utilization by Intestinal Lactobacillus rhamnosus. Nutrients. 2018 Oct 16;10(10):1517. doi: 10.3390/nu10101517. |
2018 Oct 16 | degradation | 2 | 1 | GH2 |
| PUL0157 | RNA-seq, differential gene expression | human milk oligosaccharide | Lactobacillus rhamnosus | <a href=https://pubmed.ncbi.nlm.nih.gov/30332787/>30332787</a> Prebiotics for Lactose Intolerance: Variability in Galacto-Oligosaccharide Utilization by Intestinal Lactobacillus rhamnosus. Nutrients. 2018 Oct 16;10(10):1517. doi: 10.3390/nu10101517. |
2018 Oct 16 | degradation | 4 | 1 | GH1 |
| PUL0158 | RNA-seq, differential gene expression | human milk oligosaccharide | Lactobacillus rhamnosus | <a href=https://pubmed.ncbi.nlm.nih.gov/30332787/>30332787</a> Prebiotics for Lactose Intolerance: Variability in Galacto-Oligosaccharide Utilization by Intestinal Lactobacillus rhamnosus. Nutrients. 2018 Oct 16;10(10):1517. doi: 10.3390/nu10101517. |
2018 Oct 16 | degradation | 4 | 1 | GH1 |
| PUL0159 | RNA-seq, differential gene expression | human milk oligosaccharide | Lactobacillus rhamnosus | <a href=https://pubmed.ncbi.nlm.nih.gov/30332787/>30332787</a> Prebiotics for Lactose Intolerance: Variability in Galacto-Oligosaccharide Utilization by Intestinal Lactobacillus rhamnosus. Nutrients. 2018 Oct 16;10(10):1517. doi: 10.3390/nu10101517. |
2018 Oct 16 | degradation | 2 | 1 | GH2 |
| PUL0171 | qRT-PCR, RNA-seq | host glycan | Bacteroides fragilis | <a href=https://pubmed.ncbi.nlm.nih.gov/27353652/>27353652</a> cis-Encoded Small RNAs, a Conserved Mechanism for Repression of Polysaccharide Utilization in Bacteroides. J Bacteriol. 2016 Aug 25;198(18):2410-8. doi: 10.1128/JB.00381-16. Print 2016 Sep 15. |
2016 Sep 15 | degradation | 7 | 1 | GH18 |
| PUL0189 | RNA-seq, RT-PCR, qPCR | pectin | Bacteroides xylanisolvens | <a href=https://pubmed.ncbi.nlm.nih.gov/26920945/>26920945</a> Unraveling the pectinolytic function of Bacteroides xylanisolvens using a RNA-seq approach and mutagenesis. BMC Genomics. 2016 Feb 27;17:147. doi: 10.1186/s12864-016-2472-1. |
2016 Feb 27 | degradation | 17 | 9 | CBM67, GH78, CBM67, GH78, GH33, CE19, GH140, GH28, GH43_18, GH92, GH95, PL1_2 |
| PUL0190 | RNA-seq, RT-PCR, qPCR | pectin | Bacteroides xylanisolvens | <a href=https://pubmed.ncbi.nlm.nih.gov/26920945/>26920945</a> Unraveling the pectinolytic function of Bacteroides xylanisolvens using a RNA-seq approach and mutagenesis. BMC Genomics. 2016 Feb 27;17:147. doi: 10.1186/s12864-016-2472-1. |
2016 Feb 27 | degradation | 15 | 6 | GH146, GH43_29, GH43_4, GH51_1, GH51_2 |
| PUL0191 | RNA-seq, RT-PCR, qPCR | pectin | Bacteroides xylanisolvens | <a href=https://pubmed.ncbi.nlm.nih.gov/26920945/>26920945</a> Unraveling the pectinolytic function of Bacteroides xylanisolvens using a RNA-seq approach and mutagenesis. BMC Genomics. 2016 Feb 27;17:147. doi: 10.1186/s12864-016-2472-1. |
2016 Feb 27 | degradation | 11 | 5 | CE12, CE8, CE8, GH105, PL1_2 |
| PUL0192 | RNA-seq, RT-PCR, qPCR | pectin | Bacteroides xylanisolvens | <a href=https://pubmed.ncbi.nlm.nih.gov/26920945/>26920945</a> Unraveling the pectinolytic function of Bacteroides xylanisolvens using a RNA-seq approach and mutagenesis. BMC Genomics. 2016 Feb 27;17:147. doi: 10.1186/s12864-016-2472-1. |
2016 Feb 27 | degradation | 27 | 14 | CE12, CE12, CE12, GH105, GH106, GH2, GH28, GH42, GH43_18, GH43_34, CBM32, PL11, PL11_1, PL26 |
| PUL0193 | RNA-seq, RT-PCR, qPCR | pectin | Bacteroides xylanisolvens | <a href=https://pubmed.ncbi.nlm.nih.gov/26920945/>26920945</a> Unraveling the pectinolytic function of Bacteroides xylanisolvens using a RNA-seq approach and mutagenesis. BMC Genomics. 2016 Feb 27;17:147. doi: 10.1186/s12864-016-2472-1. |
2016 Feb 27 | degradation | 30 | 8 | CE20, GH105, GH117, GH117, GH2, GH28, PL11 |
| PUL0217 | RNA-seq | galactomannan | Caldanaerobius polysaccharolyticus | <a href=https://pubmed.ncbi.nlm.nih.gov/25342756/>25342756</a> Structural and biochemical basis for mannan utilization by Caldanaerobius polysaccharolyticus strain ATCC BAA-17. J Biol Chem. 2014 Dec 12;289(50):34965-77. doi: 10.1074/jbc.M114.579904. Epub 2014 Oct 23. |
2014 Dec 12 | degradation | 7 | 2 | GH130_2, GH5_36 |
| PUL0262 | RNA-seq | xylan | Bacteroides cellulosilyticus | <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a> Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20. |
2013 | degradation | 12 | 6 | CE1, CE6, GH95, GH10, GH5_21, GH8 |
| PUL0263 | RNA-seq | xylan | Bacteroides cellulosilyticus | <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/30674645/>30674645</a> Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. Wood-Derived Dietary Fibers Promote Beneficial Human Gut Microbiota. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20. mSphere. 2019 Jan 23;4(1):e00554-18. doi: 10.1128/mSphere.00554-18. |
2013,2019 Jan 23 | degradation | 5 | 1 | GH10 |
| PUL0264 | RNA-seq | carrageenan | Pseudoalteromonas distincta | <a href=https://pubmed.ncbi.nlm.nih.gov/31886414/>31886414</a> Insights into the kappa/iota-carrageenan metabolism pathway of some marine Pseudoalteromonas species. Commun Biol. 2019 Dec 19;2:474. doi: 10.1038/s42003-019-0721-y. eCollection 2019. |
2019 | degradation | 29 | 4 | GH16_13, GH16_17, GH167 |
| PUL0400 | RT-qPCR, RNA-seq | alginate | Alteromonas macleodii | <a href=https://pubmed.ncbi.nlm.nih.gov/25847866/>25847866</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/30116038/>30116038</a> Different utilization of alginate and other algal polysaccharides by marine Alteromonas macleodii ecotypes. Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides. Environ Microbiol. 2015 Oct;17(10):3857-68. doi: 10.1111/1462-2920.12862. Epub 2015 May 8. ISME J. 2019 Jan;13(1):92-103. doi: 10.1038/s41396-018-0252-4. Epub 2018 Aug 16. |
2015 Oct,2019 Jan | degradation | 14 | 5 | CBM32, PL7_5, PL17_2, PL17, PL6_3, PL6, PL6_1, PL7_5 |
| PUL0401 | RNA-seq | beta-glucan | Alteromonas macleodii | <a href=https://pubmed.ncbi.nlm.nih.gov/30116038/>30116038</a> Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides. ISME J. 2019 Jan;13(1):92-103. doi: 10.1038/s41396-018-0252-4. Epub 2018 Aug 16. |
2019 Jan | degradation | 9 | 3 | GH1, GH16_3, GH3 |
| PUL0403 | RNA-seq | beta-glucan | Alteromonas macleodii | <a href=https://pubmed.ncbi.nlm.nih.gov/30116038/>30116038</a> Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides. ISME J. 2019 Jan;13(1):92-103. doi: 10.1038/s41396-018-0252-4. Epub 2018 Aug 16. |
2019 Jan | degradation | 4 | 1 | GH1 |
| PUL0404 | RNA-seq | pectin | Alteromonas macleodii | <a href=https://pubmed.ncbi.nlm.nih.gov/30116038/>30116038</a> Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides. ISME J. 2019 Jan;13(1):92-103. doi: 10.1038/s41396-018-0252-4. Epub 2018 Aug 16. |
2019 Jan | degradation | 18 | 4 | CE12, CE8, GH105, GH28 |
| PUL0405 | RNA-seq | pectin | Alteromonas macleodii | <a href=https://pubmed.ncbi.nlm.nih.gov/30116038/>30116038</a> Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides. ISME J. 2019 Jan;13(1):92-103. doi: 10.1038/s41396-018-0252-4. Epub 2018 Aug 16. |
2019 Jan | degradation | 4 | 2 | PL1_2, PL1_5, PL1_5 |
| PUL0456 | microarray, RNA-seq | xylan | Prevotella bryantii | <a href=https://pubmed.ncbi.nlm.nih.gov/20622018/>20622018</a> Transcriptomic analyses of xylan degradation by Prevotella bryantii and insights into energy acquisition by xylanolytic bacteroidetes. J Biol Chem. 2010 Sep 24;285(39):30261-73. doi: 10.1074/jbc.M110.141788. Epub 2010 Jul 9. |
2010 Sep 24 | degradation | 12 | 4 | GH43_10, GH43_1, GH67, GH10 |
| PUL0457 | high-performance anion-exchange chromatography, enzyme activity assay, RNA-seq | xylan | Lactobacillus rossiae | <a href=https://pubmed.ncbi.nlm.nih.gov/27142164/>27142164</a> Cloning, expression and characterization of a beta-D-xylosidase from Lactobacillus rossiae DSM 15814(T). Microb Cell Fact. 2016 May 3;15:72. doi: 10.1186/s12934-016-0473-z. |
2016 May 3 | degradation | 7 | 1 | GH43_11, CBM91 |
| PUL0458 | RNA-seq, analysis of reaction products, enzyme activity assay | carrageenan | Colwellia echini | <a href=https://pubmed.ncbi.nlm.nih.gov/31915221/>31915221</a> A Multifunctional Polysaccharide Utilization Gene Cluster in Colwellia echini Encodes Enzymes for the Complete Degradation of kappa-Carrageenan, iota-Carrageenan, and Hybrid beta/kappa-Carrageenan. mSphere. 2020 Jan 8;5(1):e00792-19. doi: 10.1128/mSphere.00792-19. |
2020 Jan 8 | degradation | 46 | 9 | GH16_13, GH16_13, CBM16, CBM16, GH16_17, GH16_3, GH167, GH82 |
| PUL0459 | RNA-seq, analysis of reaction products, enzyme activity assay, thin-layer chromatography, liquid chromatography, mass spectrometry | agarose | Colwellia echini A3 | <a href=https://pubmed.ncbi.nlm.nih.gov/31915221/>31915221</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/33811026/>33811026</a> A Multifunctional Polysaccharide Utilization Gene Cluster in Colwellia echini Encodes Enzymes for the Complete Degradation of kappa-Carrageenan, iota-Carrageenan, and Hybrid beta/kappa-Carrageenan. A Novel Auxiliary Agarolytic Pathway Expands Metabolic Versatility in the Agar-Degrading Marine Bacterium Colwellia echini A3(T). mSphere. 2020 Jan 8;5(1):e00792-19. doi: 10.1128/mSphere.00792-19. Appl Environ Microbiol. 2021 May 26;87(12):e0023021. doi: 10.1128/AEM.00230-21. Epub 2021 May 26. |
2020 Jan 8,2021 May 26 | degradation | 45 | 9 | GH117, GH117, GH2, GH29, GH50, GH86, GH96 |
| PUL0467 | microarray, qPCR, expression of recombinant proteins, RNA-seq, differential gene expression | host glycan | Bacteroides thetaiotaomicron | <a href=https://pubmed.ncbi.nlm.nih.gov/18996345/>18996345</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/31160824/>31160824</a> Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Complex N-glycan breakdown by gut Bacteroides involves an extensive enzymatic apparatus encoded by multiple co-regulated genetic loci. Cell Host Microbe. 2008 Nov 13;4(5):447-57. doi: 10.1016/j.chom.2008.09.007. Nat Microbiol. 2019 Sep;4(9):1571-1581. doi: 10.1038/s41564-019-0466-x. Epub 2019 Jun 3. |
2008 Nov 13,2019 Sep | degradation | 14 | 4 | GH18, GH2, GH20, GH29, CBM32 |
| PUL0529 | microarray, qPCR, RNA-seq, reducing-sugar assay, growth assay | pectin | Bacteroides ovatus | <a href=https://pubmed.ncbi.nlm.nih.gov/22205877/>22205877</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/39892338/>39892338</a> Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. In vitro fermentation of a purified fraction of polysaccharides from the root of Brassica rapa L. by human gut microbiota and its interaction with Bacteroides ovatus. PLoS Biol. 2011 Dec;9(12):e1001221. doi: 10.1371/journal.pbio.1001221. Epub 2011 Dec 20. Food Chem. 2025 May 1;473:143109. doi: 10.1016/j.foodchem.2025.143109. Epub 2025 Jan 27. |
2011 Dec,2025 May 1 | degradation | 27 | 13 | CE12, CE8, CE8, GH105, GH28, GH3, GH43_10, CBM91, PL1_2 |
| PUL0532 | RNA-seq | arabinan | Bacteroides cellulosilyticus | <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a> Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20. |
2013 | degradation | 17 | 5 | GH146, GH43_4, GH51_1, GH51_2 |
| PUL0533 | RNA-seq | xylan | Bacteroides cellulosilyticus | <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a> Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20. |
2013 | degradation | 9 | 3 | GH10, GH115, GH30_8 |
| PUL0534 | RNA-seq | pectin | Bacteroides cellulosilyticus | <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a> Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20. |
2013 | degradation | 9 | 5 | GH13_10, GH133, GH147, GH2, GH53 |
| PUL0535 | RNA-seq | arabinogalactan | Bacteroides cellulosilyticus | <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a> Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20. |
2013 | degradation | 9 | 3 | CBM32, GH16_3, GH43_24, GH16_3 |
| PUL0536 | RNA-seq | glycosaminoglycan | Bacteroides cellulosilyticus | <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a> Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20. |
2013 | degradation | 6 | 1 | GH2 |
| PUL0537 | RNA-seq | beta-glucan | Bacteroides cellulosilyticus | <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a> Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20. |
2013 | degradation | 7 | 3 | GH157, GH3 |
| PUL0538 | RNA-seq | galactomannan | Bacteroides cellulosilyticus | <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a> Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20. |
2013 | degradation | 15 | 7 | CE7, GH130_1, GH26, GH26, GH26, GH3, GH5_2, GH5_7 |
| PUL0539 | RNA-seq | pectin | Bacteroides cellulosilyticus | <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a> Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20. |
2013 | degradation | 16 | 7 | CE20, GH105, GH105, GH106, GH28, PL11, PL1_2 |
| PUL0540 | RNA-seq | starch | Bacteroides cellulosilyticus | <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a> Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20. |
2013 | degradation | 6 | 3 | GH13, GH97 |
| PUL0541 | RNA-seq | glycosaminoglycan | Bacteroides cellulosilyticus | <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a> Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20. |
2013 | degradation | 5 | 1 | PL8_2 |
| PUL0543 | RNA-seq | beta-glucan | Bacteroides cellulosilyticus | <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a> Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20. |
2013 | degradation | 6 | 3 | GH2, CBM57, GH30_3, PL38, GH88 |
| PUL0545 | RNA-seq | arabinoxylan | Bacteroides cellulosilyticus | <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a> Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20. |
2013 | degradation | 10 | 6 | CE1, GH3, GH43_17, GH43_2, CBM6, GH43_7, GH43_7, GH9 |
| PUL0546 | RNA-seq | arabinogalactan | Bacteroides cellulosilyticus | <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a> Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20. |
2013 | degradation | 9 | 5 | CBM13, CBM32, GH2, GH30_4, GH51_2 |
| PUL0547 | RNA-seq | beta-mannan | Bacteroides cellulosilyticus | <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a> Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20. |
2013 | degradation | 11 | 6 | GH130_5, GH173, GH2, GH26, GH3 |
| PUL0548 | RNA-seq | pectin | Bacteroides cellulosilyticus | <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a> Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20. |
2013 | degradation | 7 | 3 | GH28, GH92 |
| PUL0549 | RNA-seq | pectin | Bacteroides cellulosilyticus | <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a> Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20. |
2013 | degradation | 6 | 1 | GH140 |
| PUL0550 | RNA-seq | glycosaminoglycan | Bacteroides cellulosilyticus | <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a> Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20. |
2013 | degradation | 7 | 3 | CE8, GH3, PL1_2 |
| PUL0551 | RNA-seq | beta-glucan | Bacteroides cellulosilyticus | <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a> Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20. |
2013 | degradation | 6 | 2 | GH16_3, GH3 |
| PUL0552 | RNA-seq | arabinan | Bacteroides cellulosilyticus | <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a> Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20. |
2013 | degradation | 7 | 4 | CBM67, GH78, GH143, GH142, GH43_18, PL1_2 |
| PUL0554 | RNA-seq | starch | Bacteroides cellulosilyticus | <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a> Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20. |
2013 | degradation | 6 | 3 | GH31, GH66, GH97 |
| PUL0564 | microarray, qPCR, UHPLC-MS, RNA-seq, RT-qPCR | pectin | Bacteroides thetaiotaomicron | <a href=https://pubmed.ncbi.nlm.nih.gov/18996345/>18996345</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/22205877/>22205877</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/34420703/>34420703</a> Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. Discrete genetic loci in human gut Bacteroides thetaiotaomicron confer pectin metabolism. Cell Host Microbe. 2008 Nov 13;4(5):447-57. doi: 10.1016/j.chom.2008.09.007. PLoS Biol. 2011 Dec;9(12):e1001221. doi: 10.1371/journal.pbio.1001221. Epub 2011 Dec 20. Carbohydr Polym. 2021 Nov 15;272:118534. doi: 10.1016/j.carbpol.2021.118534. Epub 2021 Aug 6. |
2008 Nov 13,2011 Dec,2021 Nov 15 | degradation | 39 | 22 | CE12, CE12, CE12, CE4, CE6, GH105, GH106, GH2, GH27, GH28, GH35, GH43_18, GH42, PL11_1, PL26, PL9, PL9_1 |
| PUL0613 | RNA-seq | host glycan | Prevotella sp. PINT | <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a> Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27. |
2020 Dec 9 | degradation | 5 | 2 | GH2, CBM57, PL38, GH88 |
| PUL0614 | RNA-seq | pectin | Prevotella sp. PINT | <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a> Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27. |
2020 Dec 9 | degradation | 3 | 1 | PL1_2 |
| PUL0615 | RNA-seq | pectin | Prevotella sp. PINT | <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a> Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27. |
2020 Dec 9 | degradation | 7 | 1 | GH28 |
| PUL0616 | RNA-seq | pectin | Prevotella sp. PINT | <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a> Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27. |
2020 Dec 9 | degradation | 9 | 1 | PL1_2 |
| PUL0617 | RNA-seq | xylan | Prevotella sp. PINT | <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a> Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27. |
2020 Dec 9 | degradation | 14 | 6 | GH10, GH43_1, GH43_35, GH5_21, GH67 |
| PUL0618 | RNA-seq | pectin | Prevotella sp. PINT | <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a> Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27. |
2020 Dec 9 | degradation | 6 | 2 | GH36, PL1 |
| PUL0619 | RNA-seq | xylan | Prevotella sp. PROD | <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a> Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27. |
2020 Dec 9 | degradation | 5 | 1 | GH35 |
| PUL0620 | RNA-seq | xylan | Prevotella sp. PROD | <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a> Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27. |
2020 Dec 9 | degradation | 10 | 2 | GH128, GH51_2, GH43_19 |
| PUL0621 | RNA-seq | pectin | Prevotella sp. PROD | <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a> Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27. |
2020 Dec 9 | degradation | 8 | 4 | GH133, GH3, GH57, GT4 |
| PUL0622 | RNA-seq | xylan | Prevotella sp. PROD | <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a> Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27. |
2020 Dec 9 | degradation | 15 | 6 | CE2, GH2, GH3, GH43_7, GH43_7, PL11_1 |
| PUL0623 | RNA-seq | pectin | Prevotella sp. PMUR | <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a> Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27. |
2020 Dec 9 | degradation | 15 | 1 | GH3 |
| PUL0624 | RNA-seq | xylan | Prevotella sp. PMUR | <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a> Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27. |
2020 Dec 9 | degradation | 11 | 3 | GH128, GH43_24, GH51_2, GH43_19 |
| PUL0625 | RNA-seq | xylan | Prevotella sp. PMUR | <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a> Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27. |
2020 Dec 9 | degradation | 18 | 10 | CE1, CE1, CE1, GH115, GH30_8, GH43_10, CBM91, GH43_12, CBM91, GH43_29, CBM6, GH95, GH97 |
| PUL0653 | gene deletion mutant and growth assay, complementation study, enzyme activity assay, RNA-seq, electrophoretic mobility shift assay | agarose | Streptomyces coelicolor A3(2) | <a href=https://pubmed.ncbi.nlm.nih.gov/33889146/>33889146</a> LacI-Family Transcriptional Regulator DagR Acts as a Repressor of the Agarolytic Pathway Genes in Streptomyces coelicolor A3(2). Front Microbiol. 2021 Apr 6;12:658657. doi: 10.3389/fmicb.2021.658657. eCollection 2021. |
2021 | degradation | 17 | 4 | GH117, GH117, GH16_16, GH2, GH50 |
| PUL0665 | UHPLC-MS, RNA-seq, RT-qPCR | pectin | Bacteroides thetaiotaomicron VPI-5482 | <a href=https://pubmed.ncbi.nlm.nih.gov/34420703/>34420703</a> Discrete genetic loci in human gut Bacteroides thetaiotaomicron confer pectin metabolism. Carbohydr Polym. 2021 Nov 15;272:118534. doi: 10.1016/j.carbpol.2021.118534. Epub 2021 Aug 6. |
2021 Nov 15 | degradation | 8 | 2 | GH18, GH30_4 |
| PUL0666 | UHPLC-MS, RNA-seq, RT-qPCR | pectin | Bacteroides thetaiotaomicron VPI-5482 | <a href=https://pubmed.ncbi.nlm.nih.gov/34420703/>34420703</a> Discrete genetic loci in human gut Bacteroides thetaiotaomicron confer pectin metabolism. Carbohydr Polym. 2021 Nov 15;272:118534. doi: 10.1016/j.carbpol.2021.118534. Epub 2021 Aug 6. |
2021 Nov 15 | degradation | 4 | 4 | GH35, GH43_19, GH43_9, CBM91, GH43_19, GH51_2 |
| PUL0667 | UHPLC-MS, RNA-seq, RT-qPCR | pectin | Bacteroides thetaiotaomicron VPI-5482 | <a href=https://pubmed.ncbi.nlm.nih.gov/34420703/>34420703</a> Discrete genetic loci in human gut Bacteroides thetaiotaomicron confer pectin metabolism. Carbohydr Polym. 2021 Nov 15;272:118534. doi: 10.1016/j.carbpol.2021.118534. Epub 2021 Aug 6. |
2021 Nov 15 | degradation | 4 | 0 | NA |
| PUL0674 | microarray, enzyme activity assay, high-performance anion-exchange chromatography, mass spectrometry, RNA-seq, affinity gel electrophoresis, carbohydrate binding assay, microscale thermophoresis | beta-glucan | Bacteroides ovatus ATCC 8483 | <a href=https://pubmed.ncbi.nlm.nih.gov/34817219/>34817219</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/29020628/>29020628</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/22205877/>22205877</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/32801182/>32801182</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/31062073/>31062073</a> Mapping Molecular Recognition of beta1,3-1,4-Glucans by a Surface Glycan-Binding Protein from the Human Gut Symbiont Bacteroides ovatus. Molecular Mechanism by which Prominent Human Gut Bacteroidetes Utilize Mixed-Linkage Beta-Glucans, Major Health-Promoting Cereal Polysaccharides. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. Sharing a beta-Glucan Meal: Transcriptomic Eavesdropping on a Bacteroides ovatus-Subdoligranulum variabile-Hungatella hathewayi Consortium. Surface glycan-binding proteins are essential for cereal beta-glucan utilization by the human gut symbiont Bacteroides ovatus. Microbiol Spectr. 2021 Dec 22;9(3):e0182621. doi: 10.1128/Spectrum.01826-21. Epub 2021 Nov 24. Cell Rep. 2017 Oct 10;21(2):417-430. doi: 10.1016/j.celrep.2017.09.049. PLoS Biol. 2011 Dec;9(12):e1001221. doi: 10.1371/journal.pbio.1001221. Epub 2011 Dec 20. Appl Environ Microbiol. 2020 Oct 1;86(20):e01651-20. doi: 10.1128/AEM.01651-20. Print 2020 Oct 1. Cell Mol Life Sci. 2019 Nov;76(21):4319-4340. doi: 10.1007/s00018-019-03115-3. Epub 2019 May 6. |
2021 Dec 22,2017 Oct 10,2011 Dec,2020 Oct 1,2019 Nov | degradation | 8 | 3 | GH16_3, GH3 |
| PUL0678 | RNA-seq, thin-layer chromatography, growth assay | inulin | Lactiplantibacillus plantarum QS7T | <a href=https://pubmed.ncbi.nlm.nih.gov/34980384/>34980384</a> Global genome and comparative transcriptomic analysis reveal the inulin consumption strategy of Lactiplantibacillus plantarum QS7T. Food Res Int. 2022 Jan;151:110846. doi: 10.1016/j.foodres.2021.110846. Epub 2021 Dec 2. |
2022 Jan | degradation | 5 | 2 | GH32, GH36 |
| PUL0679 | RNA-seq, thin-layer chromatography, growth assay | inulin | Lactiplantibacillus plantarum QS7T | <a href=https://pubmed.ncbi.nlm.nih.gov/34980384/>34980384</a> Global genome and comparative transcriptomic analysis reveal the inulin consumption strategy of Lactiplantibacillus plantarum QS7T. Food Res Int. 2022 Jan;151:110846. doi: 10.1016/j.foodres.2021.110846. Epub 2021 Dec 2. |
2022 Jan | degradation | 7 | 1 | GH32 |
| PUL0687 | growth assay, RNA-seq | xylooligosaccharide | Bacteroides vulgatus ATCC 8482 | <a href=https://pubmed.ncbi.nlm.nih.gov/36043703/>36043703</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/27573446/>27573446</a> Structural and Biochemical Characterization of a Nonbinding SusD-Like Protein Involved in Xylooligosaccharide Utilization by an Uncultured Human Gut Bacteroides Strain. Functional characterization of a gene locus from an uncultured gut Bacteroides conferring xylo-oligosaccharides utilization to Escherichia coli. mSphere. 2022 Oct 26;7(5):e0024422. doi: 10.1128/msphere.00244-22. Epub 2022 Aug 31. Mol Microbiol. 2016 Nov;102(4):579-592. doi: 10.1111/mmi.13480. Epub 2016 Sep 14. |
2022 Oct 26,2016 Nov | degradation | 7 | 3 | GH10, GH43_1, GH43_12, CBM91 |
| PUL0706 | RNA-seq, growth assay | agar | Pseudoalteromonas atlantica T6c | <a href=https://pubmed.ncbi.nlm.nih.gov/37265394/>37265394</a> Constructing Marine Bacterial Metabolic Chassis for Potential Biorefinery of Red Algal Biomass and Agaropectin Wastes. ACS Synth Biol. 2023 Jun 16;12(6):1782-1793. doi: 10.1021/acssynbio.3c00063. Epub 2023 Jun 2. |
2023 Jun 16 | degradation | 43 | 15 | CE20, CE20, GH117, GH117, GH140, GH16_12, GH16_14, GH2, GH29, GH3, GH43_12, CBM91, GH43_2, CBM6, GH86 |
| PUL0707 | RNA-seq, growth assay | agar | Pseudoalteromonas atlantica T6c | <a href=https://pubmed.ncbi.nlm.nih.gov/37265394/>37265394</a> Constructing Marine Bacterial Metabolic Chassis for Potential Biorefinery of Red Algal Biomass and Agaropectin Wastes. ACS Synth Biol. 2023 Jun 16;12(6):1782-1793. doi: 10.1021/acssynbio.3c00063. Epub 2023 Jun 2. |
2023 Jun 16 | degradation | 46 | 4 | AA2, GH117, GH117, GH13_13, GH50 |
| PUL0708 | RNA-seq, growth assay | agar | Pseudoalteromonas atlantica T6c | <a href=https://pubmed.ncbi.nlm.nih.gov/37265394/>37265394</a> Constructing Marine Bacterial Metabolic Chassis for Potential Biorefinery of Red Algal Biomass and Agaropectin Wastes. ACS Synth Biol. 2023 Jun 16;12(6):1782-1793. doi: 10.1021/acssynbio.3c00063. Epub 2023 Jun 2. |
2023 Jun 16 | degradation | 41 | 5 | CE1, GH13_38, GH31, GH86 |
| PUL0709 | RNA-seq, growth assay | agar | Pseudoalteromonas atlantica T6c | <a href=https://pubmed.ncbi.nlm.nih.gov/37265394/>37265394</a> Constructing Marine Bacterial Metabolic Chassis for Potential Biorefinery of Red Algal Biomass and Agaropectin Wastes. ACS Synth Biol. 2023 Jun 16;12(6):1782-1793. doi: 10.1021/acssynbio.3c00063. Epub 2023 Jun 2. |
2023 Jun 16 | degradation | 29 | 0 | NA |
| PUL0710 | RNA-seq, growth assay, liquid chromatography and mass spectrometry, gene mutant, mice colonization with mutant | mucin | Akkermansia muciniphila ATCC BAA-835 | <a href=https://pubmed.ncbi.nlm.nih.gov/37337046/>37337046</a> A genetic system for Akkermansia muciniphila reveals a role for mucin foraging in gut colonization and host sterol biosynthesis gene expression. Nat Microbiol. 2023 Aug;8(8):1450-1467. doi: 10.1038/s41564-023-01407-w. Epub 2023 Jun 19. |
2023 Aug | degradation | 8 | 0 | NA |
| PUL0711 | RNA-seq, growth assay, liquid chromatography and mass spectrometry, gene mutant, mice colonization with mutant | mucin | Akkermansia muciniphila ATCC BAA-835 | <a href=https://pubmed.ncbi.nlm.nih.gov/37337046/>37337046</a> A genetic system for Akkermansia muciniphila reveals a role for mucin foraging in gut colonization and host sterol biosynthesis gene expression. Nat Microbiol. 2023 Aug;8(8):1450-1467. doi: 10.1038/s41564-023-01407-w. Epub 2023 Jun 19. |
2023 Aug | degradation | 5 | 0 | NA |
| PUL0712 | growth assay, RNA-seq, qPCR | pectic polysaccharide | Bacteroides thetaiotaomicron VPI-5482 | <a href=https://pubmed.ncbi.nlm.nih.gov/37451376/>37451376</a> A pectic polysaccharide isolated from Achyranthes bidentata is metabolized by human gut Bacteroides spp. Int J Biol Macromol. 2023 Sep 1;248:125785. doi: 10.1016/j.ijbiomac.2023.125785. Epub 2023 Jul 13. |
2023 Sep 1 | degradation | 10 | 0 | NA |
| PUL0713 | growth assay, RNA-seq, qPCR | pectic polysaccharide | Bacteroides thetaiotaomicron VPI-5482 | <a href=https://pubmed.ncbi.nlm.nih.gov/37451376/>37451376</a> A pectic polysaccharide isolated from Achyranthes bidentata is metabolized by human gut Bacteroides spp. Int J Biol Macromol. 2023 Sep 1;248:125785. doi: 10.1016/j.ijbiomac.2023.125785. Epub 2023 Jul 13. |
2023 Sep 1 | degradation | 4 | 0 | NA |
| PUL0719 | RNA-seq, growth assay | starch | Xanthomonas citri pv. citri str. 306 | <a href=https://pubmed.ncbi.nlm.nih.gov/37855631/>37855631</a> Plant structural and storage glucans trigger distinct transcriptional responses that modulate the motility of Xanthomonas pathogens. Microbiol Spectr. 2023 Dec 12;11(6):e0228023. doi: 10.1128/spectrum.02280-23. Epub 2023 Oct 19. |
2023 Dec 12 | degradation | 7 | 3 | GH13_2, GH13_23, GH97 |
| PUL0721 | RNA-seq, RT-qPCR, gene deletion mutant and growth assay | human milk oligosaccharide | Phocaeicola dorei strain DSM 17855 | <a href=https://pubmed.ncbi.nlm.nih.gov/38167825/>38167825</a> CRISPR-Cas-based identification of a sialylated human milk oligosaccharides utilization cluster in the infant gut commensal Bacteroides dorei. Nat Commun. 2024 Jan 2;15(1):105. doi: 10.1038/s41467-023-44437-y. |
2024 Jan 2 | degradation | 13 | 9 | CBM93, GH33, CE3, CE20, CE9, GH2, GH20, GH92 |
| PUL0722 | RNA-seq, mass spectrometry, SDS-PAGE, isothermal titration calorimetry (ITC), high-performance anion-exchange chromatography, enzyme kinetic analysis, thin-layer chromatography | xylan | Polaribacter sp. Q13 | <a href=https://pubmed.ncbi.nlm.nih.gov/38169280/>38169280</a> The catabolic specialization of the marine bacterium Polaribacter sp. Q13 to red algal beta1,3/1,4-mixed-linkage xylan. Appl Environ Microbiol. 2024 Jan 24;90(1):e0170423. doi: 10.1128/aem.01704-23. Epub 2024 Jan 3. |
2024 Jan 24 | degradation | 30 | 9 | CBM4, CBM4, GH10, GH26, GH3, GH43_1, GH43_12, CBM91 |
| PUL0736 | RNA-seq, RT-qPCR, enzyme activity assay, thin-layer chromatography, Western Blot, recombinant protein expression, DSS-induced mouse colitis model | alginate | Bacteroides clarus YIT 12056 | <a href=https://pubmed.ncbi.nlm.nih.gov/38563787/>38563787</a> Alginate oligosaccharide assimilation by gut microorganisms and the potential role in gut inflammation alleviation. Appl Environ Microbiol. 2024 May 21;90(5):e0004624. doi: 10.1128/aem.00046-24. Epub 2024 Apr 2. |
2024 May 21 | degradation | 10 | 3 | CE20, PL17_2, PL17, PL6, PL6_1 |
| PUL0740 | RNA-seq, ion chromatography, HPLC, growth assay | human milk oligosaccharide | Bifidobacterium longum subsp. infantis ATCC 15697 | <a href=https://pubmed.ncbi.nlm.nih.gov/32985563/>32985563</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/31489370/>31489370</a> Strain-specific strategies of 2'-fucosyllactose, 3-fucosyllactose, and difucosyllactose assimilation by Bifidobacterium longum subsp. infantis Bi-26 and ATCC 15697. Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacteria-infant symbiosis. Sci Rep. 2020 Sep 28;10(1):15919. doi: 10.1038/s41598-020-72792-z. Sci Adv. 2019 Aug 28;5(8):eaaw7696. doi: 10.1126/sciadv.aaw7696. eCollection 2019 Aug. |
2020 Sep 28,2019 Aug | degradation | 3 | 0 | NA |
| PUL0741 | RNA-seq, ion chromatography, HPLC, growth assay | human milk oligosaccharide | Bifidobacterium longum subsp. infantis ATCC 15697 | <a href=https://pubmed.ncbi.nlm.nih.gov/32985563/>32985563</a> Strain-specific strategies of 2'-fucosyllactose, 3-fucosyllactose, and difucosyllactose assimilation by Bifidobacterium longum subsp. infantis Bi-26 and ATCC 15697. Sci Rep. 2020 Sep 28;10(1):15919. doi: 10.1038/s41598-020-72792-z. |
2020 Sep 28 | degradation | 7 | 0 | NA |
| PUL0742 | gene deletion and growth assay, recombinant protein expression, crystallization, isothermal titration calorimetry (ITC), RNA-seq, ion chromatography, HPLC, growth assay | human milk oligosaccharide | Bifidobacterium longum subsp. infantis ATCC 15697 | <a href=https://pubmed.ncbi.nlm.nih.gov/32985563/>32985563</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/31489370/>31489370</a> Strain-specific strategies of 2'-fucosyllactose, 3-fucosyllactose, and difucosyllactose assimilation by Bifidobacterium longum subsp. infantis Bi-26 and ATCC 15697. Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacteria-infant symbiosis. Sci Rep. 2020 Sep 28;10(1):15919. doi: 10.1038/s41598-020-72792-z. Sci Adv. 2019 Aug 28;5(8):eaaw7696. doi: 10.1126/sciadv.aaw7696. eCollection 2019 Aug. |
2020 Sep 28,2019 Aug | degradation | 5 | 1 | GH151 |
| PUL0744 | RNA-seq, HPLC, gene mutant, differential gene expression | lactose | Listeria monocytogenes serotype 4b str. F2365 | <a href=https://pubmed.ncbi.nlm.nih.gov/38876592/>38876592</a> Activation of a silent lactose utilization pathway in an evolved Listeria monocytogenes F2365 outbreak isolate. Food Res Int. 2024 Aug;189:114554. doi: 10.1016/j.foodres.2024.114554. Epub 2024 May 27. |
2024 Aug | degradation | 5 | 1 | GH1 |
| PUL0745 | high performance gel permeation chromatography, gas chromatography, RNA-seq, differential gene expression | pectic polysaccharide | Bacteroides ovatus strain ATCC 8483 | <a href=https://pubmed.ncbi.nlm.nih.gov/38890895/>38890895</a> The Utilization by Bacteroides spp. of a Purified Polysaccharide from Fuzhuan Brick Tea. Foods. 2024 May 26;13(11):1666. doi: 10.3390/foods13111666. |
2024 May 26 | degradation | 12 | 4 | GH146, GH28, GH30_2, PL12 |
| PUL0746 | high performance gel permeation chromatography, gas chromatography, RNA-seq, differential gene expression | pectic polysaccharide | Bacteroides ovatus strain ATCC 8483 | <a href=https://pubmed.ncbi.nlm.nih.gov/38890895/>38890895</a> The Utilization by Bacteroides spp. of a Purified Polysaccharide from Fuzhuan Brick Tea. Foods. 2024 May 26;13(11):1666. doi: 10.3390/foods13111666. |
2024 May 26 | degradation | 7 | 4 | CBM93, GH33, GH2, GH20, GH20, CBM32 |
| PUL0747 | high performance gel permeation chromatography, gas chromatography, RNA-seq, differential gene expression | pectic polysaccharide | Bacteroides ovatus strain ATCC 8483 | <a href=https://pubmed.ncbi.nlm.nih.gov/38890895/>38890895</a> The Utilization by Bacteroides spp. of a Purified Polysaccharide from Fuzhuan Brick Tea. Foods. 2024 May 26;13(11):1666. doi: 10.3390/foods13111666. |
2024 May 26 | degradation | 9 | 3 | GH2, GH20, GH29, CBM32 |
| PUL0750 | RNA-seq, BCA assay, pNP glycoside assay, HPAEC-PAD, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography | beta-glucan | Segatella copri DSM 18205 | <a href=https://pubmed.ncbi.nlm.nih.gov/39122003/>39122003</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a> The molecular basis of cereal mixed-linkage beta-glucan utilization by the human gut bacterium Segatella copri. Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. J Biol Chem. 2024 Sep;300(9):107625. doi: 10.1016/j.jbc.2024.107625. Epub 2024 Aug 8. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5. |
2024 Sep,2025 Jan 31 | degradation | 11 | 3 | GH3, GH5_4, GH94 |
| PUL0756 | RNA-seq, qRT-PCR | N-glycan | Barnesiella intestinihominis | <a href=https://pubmed.ncbi.nlm.nih.gov/39510934/>39510934</a> Molecular mechanisms of complex-type N-glycan breakdown and metabolism by the human intestinal bacterium Barnesiella intestinihominis. J Biosci Bioeng. 2025 Jan;139(1):14-22. doi: 10.1016/j.jbiosc.2024.10.006. Epub 2024 Nov 7. |
2025 Jan | degradation | 11 | 7 | GH130_2, GH20, GH84, CBM32, GH85, GH92 |
| PUL0757 | RNA-seq, qRT-PCR | N-glycan | Barnesiella intestinihominis | <a href=https://pubmed.ncbi.nlm.nih.gov/39510934/>39510934</a> Molecular mechanisms of complex-type N-glycan breakdown and metabolism by the human intestinal bacterium Barnesiella intestinihominis. J Biosci Bioeng. 2025 Jan;139(1):14-22. doi: 10.1016/j.jbiosc.2024.10.006. Epub 2024 Nov 7. |
2025 Jan | degradation | 5 | 1 | GH85 |
| PUL0758 | RNA-seq, qRT-PCR | N-glycan | Barnesiella intestinihominis | <a href=https://pubmed.ncbi.nlm.nih.gov/39510934/>39510934</a> Molecular mechanisms of complex-type N-glycan breakdown and metabolism by the human intestinal bacterium Barnesiella intestinihominis. J Biosci Bioeng. 2025 Jan;139(1):14-22. doi: 10.1016/j.jbiosc.2024.10.006. Epub 2024 Nov 7. |
2025 Jan | degradation | 3 | 1 | GH85 |
| PUL0759 | RNA-seq, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography | Hemicellulose | Segatella copri DSM 18205 | <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a> Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5. |
2025 Jan 31 | degradation | 3 | 2 | GH2, GH31_4 |
| PUL0760 | RNA-seq, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography | Hemicellulose | Segatella copri DSM 18205 | <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a> Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5. |
2025 Jan 31 | degradation | 7 | 3 | GH5_4, GH5_7 |
| PUL0761 | RNA-seq, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography | Hemicellulose | Segatella copri DSM 18205 | <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a> Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5. |
2025 Jan 31 | degradation | 10 | 4 | GH10, GH35, GH43_1, GH67 |
| PUL0762 | RNA-seq, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography | Hemicellulose | Segatella copri DSM 18205 | <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a> Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5. |
2025 Jan 31 | degradation | 9 | 3 | GH10, GH43_12, CBM91, GH5_21 |
| PUL0763 | RNA-seq, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography | Hemicellulose | Segatella copri DSM 18205 | <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a> Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5. |
2025 Jan 31 | degradation | 5 | 3 | CE6, CE1, GH31_4, GH43_2, CBM6, GH8 |
| PUL0764 | RNA-seq, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography | Hemicellulose | Segatella copri DSM 18205 | <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a> Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5. |
2025 Jan 31 | degradation | 4 | 4 | GH43_10, CBM91, GH43_29, CBM6, GH43_29, CBM6, GH43_10, CBM91, GH95 |
| PUL0765 | RNA-seq, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography | inulin | Segatella copri DSM 18205 | <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a> Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5. |
2025 Jan 31 | degradation | 10 | 1 | GH32 |
| PUL0766 | RNA-seq, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography | starch | Segatella copri DSM 18205 | <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a> Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5. |
2025 Jan 31 | degradation | 5 | 2 | GH13_44, GH97 |
| PUL0767 | RNA-seq, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography | pectin | Segatella copri DSM 18205 | <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a> Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5. |
2025 Jan 31 | degradation | 15 | 6 | CE8, GH28, GH28, GH105, GH43_10, CBM91, GH95, PL1_2 |
| PUL0768 | RNA-seq, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography | pectin | Segatella copri DSM 18205 | <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a> Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5. |
2025 Jan 31 | degradation | 7 | 3 | GH2, GH53, PL1, CBM77 |
| PUL0769 | RNA-seq, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography | pectin | Segatella copri DSM 18205 | <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a> Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5. |
2025 Jan 31 | degradation | 9 | 3 | GH43_4, GH43_5, GH51_2 |
| PUL0770 | RNA-seq, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography | pectin | Segatella copri DSM 18205 | <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a> Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5. |
2025 Jan 31 | degradation | 8 | 1 | GH51_1 |
| PUL0771 | RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay | fucoidan | Rhodopirellula sp. SWK7 | <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a> Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w. |
2024 Dec 30 | degradation | 27 | 7 | GH141, GH168, GH29 |
| PUL0772 | RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay | fucoidan | Rhodopirellula sp. SWK7 | <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a> Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w. |
2024 Dec 30 | degradation | 9 | 1 | GH29 |
| PUL0773 | RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay | fucoidan | Rhodopirellula sp. SWK7 | <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a> Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w. |
2024 Dec 30 | degradation | 23 | 3 | GH116, GH29, GH97 |
| PUL0774 | RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay | fucoidan | Rhodopirellula sp. SWK7 | <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a> Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w. |
2024 Dec 30 | degradation | 23 | 8 | GH117, GH141, GH168, GH29, GH95 |
| PUL0775 | RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay | fucoidan | Rhodopirellula sp. SWK7 | <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a> Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w. |
2024 Dec 30 | degradation | 14 | 5 | CE14, GH128, GH141, GH29 |
| PUL0776 | RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay | fucoidan | Rhodopirellula sp. SWK7 | <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a> Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w. |
2024 Dec 30 | degradation | 32 | 10 | CE19, CBM51, CE20, GH115, GH116, GH117, GH117, GH29, GH95 |
| PUL0777 | RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay | fucoidan | Neorhodopirellula lusitana | <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a> Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w. |
2024 Dec 30 | degradation | 26 | 3 | GH141, GH29 |
| PUL0778 | RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay | fucoidan | Neorhodopirellula lusitana | <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a> Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w. |
2024 Dec 30 | degradation | 18 | 4 | GH172, GH29, GH3, GH95 |
| PUL0779 | RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay | fucoidan | Neorhodopirellula lusitana | <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a> Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w. |
2024 Dec 30 | degradation | 19 | 9 | GH107, GH141, GH168, GH29 |
| PUL0780 | RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay | fucoidan | Neorhodopirellula lusitana | <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a> Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w. |
2024 Dec 30 | degradation | 24 | 8 | CBM32, CE12, CE6, GH141, GH29, GH95 |
| PUL0781 | RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay | fucoidan | Neorhodopirellula lusitana | <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a> Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w. |
2024 Dec 30 | degradation | 17 | 4 | GH116, GH29, GH95 |
| PUL0782 | RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay | fucoidan | Neorhodopirellula lusitana | <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a> Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w. |
2024 Dec 30 | degradation | 15 | 3 | GH109, GH117, GH29 |
| PUL0783 | RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay | fucoidan | Neorhodopirellula lusitana | <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a> Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w. |
2024 Dec 30 | degradation | 20 | 6 | CBM51, GH115, GH172, GH28, GH29, GH95 |
| PUL0784 | RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay | fucoidan | Neorhodopirellula lusitana | <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a> Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w. |
2024 Dec 30 | degradation | 8 | 2 | GH29, GH95 |
| PUL0785 | RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay | fucoidan | Neorhodopirellula lusitana | <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a> Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w. |
2024 Dec 30 | degradation | 22 | 5 | CE20, CE20, GH95, CE7, GH117, GH168 |
| PUL0786 | RNA-seq, reducing-sugar assay, growth assay, high performance gel permeation chromatography, gas chromatography, RNA-seq, differential gene expression | pectic polysaccharide | Bacteroides ovatus strain ATCC 8483 | <a href=https://pubmed.ncbi.nlm.nih.gov/38890895/>38890895</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/39892338/>39892338</a> The Utilization by Bacteroides spp. of a Purified Polysaccharide from Fuzhuan Brick Tea. In vitro fermentation of a purified fraction of polysaccharides from the root of Brassica rapa L. by human gut microbiota and its interaction with Bacteroides ovatus. Foods. 2024 May 26;13(11):1666. doi: 10.3390/foods13111666. Food Chem. 2025 May 1;473:143109. doi: 10.1016/j.foodchem.2025.143109. Epub 2025 Jan 27. |
2024 May 26,2025 May 1 | degradation | 26 | 14 | CBM67, GH78, CBM67, GH78, GH33, CE19, GH105, GH130_2, GH140, GH143, GH142, GH163, GH18, GH28, GH43_18, GH92, GH95, PL1_2 |
| PUL0787 | RNA-seq, reducing-sugar assay, growth assay | pectic polysaccharide | Bacteroides ovatus strain ATCC 8483 | <a href=https://pubmed.ncbi.nlm.nih.gov/39892338/>39892338</a> In vitro fermentation of a purified fraction of polysaccharides from the root of Brassica rapa L. by human gut microbiota and its interaction with Bacteroides ovatus. Food Chem. 2025 May 1;473:143109. doi: 10.1016/j.foodchem.2025.143109. Epub 2025 Jan 27. |
2025 May 1 | degradation | 31 | 16 | CE12, CE12, CE12, CE4, GH105, GH106, GH2, GH28, GH42, GH43_18, GH43_34, PL11_1, PL26 |
| PUL0788 | RNA-seq, reducing-sugar assay, growth assay | pectic polysaccharide | Bacteroides ovatus strain ATCC 8483 | <a href=https://pubmed.ncbi.nlm.nih.gov/39892338/>39892338</a> In vitro fermentation of a purified fraction of polysaccharides from the root of Brassica rapa L. by human gut microbiota and its interaction with Bacteroides ovatus. Food Chem. 2025 May 1;473:143109. doi: 10.1016/j.foodchem.2025.143109. Epub 2025 Jan 27. |
2025 May 1 | degradation | 26 | 8 | CE20, GH105, GH2, GH28, PL11, PL1_2, PL9_1 |
| PUL0789 | RNA-seq, reducing-sugar assay, growth assay | pectic polysaccharide | Bacteroides ovatus strain ATCC 8483 | <a href=https://pubmed.ncbi.nlm.nih.gov/39892338/>39892338</a> In vitro fermentation of a purified fraction of polysaccharides from the root of Brassica rapa L. by human gut microbiota and its interaction with Bacteroides ovatus. Food Chem. 2025 May 1;473:143109. doi: 10.1016/j.foodchem.2025.143109. Epub 2025 Jan 27. |
2025 May 1 | degradation | 9 | 2 | CBM6, GH28 |
| PUL0790 | RNA-seq, reducing-sugar assay, growth assay | pectic polysaccharide | Bacteroides ovatus strain ATCC 8483 | <a href=https://pubmed.ncbi.nlm.nih.gov/39892338/>39892338</a> In vitro fermentation of a purified fraction of polysaccharides from the root of Brassica rapa L. by human gut microbiota and its interaction with Bacteroides ovatus. Food Chem. 2025 May 1;473:143109. doi: 10.1016/j.foodchem.2025.143109. Epub 2025 Jan 27. |
2025 May 1 | degradation | 3 | 3 | GH127, GH141, GH78 |
| PUL0791 | RNA-seq, reducing-sugar assay, growth assay | pectic polysaccharide | Bacteroides ovatus strain ATCC 8483 | <a href=https://pubmed.ncbi.nlm.nih.gov/39892338/>39892338</a> In vitro fermentation of a purified fraction of polysaccharides from the root of Brassica rapa L. by human gut microbiota and its interaction with Bacteroides ovatus. Food Chem. 2025 May 1;473:143109. doi: 10.1016/j.foodchem.2025.143109. Epub 2025 Jan 27. |
2025 May 1 | degradation | 6 | 5 | CE20, GH106, GH139, GH2, PL1_2 |
| PUL0792 | enzyme activity assay, recombinant protein expression, RNA-seq | xylan | Bifidobacterium pseudocatenulatum strain YIT11952 | <a href=https://pubmed.ncbi.nlm.nih.gov/37938239/>37938239</a> Xylan utilisation promotes adaptation of Bifidobacterium pseudocatenulatum to the human gastrointestinal tract. ISME Commun. 2021 Oct 28;1(1):62. doi: 10.1038/s43705-021-00066-4. |
2021 Oct 28 | degradation | 15 | 5 | CE20, GH10, CBM9, GH120, GH43_11, CBM91, GH8 |
| PUL0793 | enzyme activity assay, quantification of reaction product reducing ends, RNA-seq, differential gene expression, NMR, MALDI-TOF/MS, gas chromatography, mass spectrometry, bicinchoninic acid (BCA) assay, recombinant protein expression | arabinan | Bacteroides intestinalis DSM 17393 | <a href=https://pubmed.ncbi.nlm.nih.gov/39443715/>39443715</a> In vivo manipulation of human gut Bacteroides fitness by abiotic oligosaccharides. Nat Chem Biol. 2025 Apr;21(4):544-554. doi: 10.1038/s41589-024-01763-6. Epub 2024 Oct 23. |
2025 Apr | degradation | 14 | 6 | CE1, GH127, GH146, GH43_34, CBM32, GH97 |
| PUL0794 | enzyme activity assay, quantification of reaction product reducing ends, RNA-seq, differential gene expression, NMR, MALDI-TOF/MS, gas chromatography, mass spectrometry, bicinchoninic acid (BCA) assay, recombinant protein expression | arabinan | Bacteroides intestinalis DSM 17393 | <a href=https://pubmed.ncbi.nlm.nih.gov/39443715/>39443715</a> In vivo manipulation of human gut Bacteroides fitness by abiotic oligosaccharides. Nat Chem Biol. 2025 Apr;21(4):544-554. doi: 10.1038/s41589-024-01763-6. Epub 2024 Oct 23. |
2025 Apr | degradation | 23 | 8 | GH146, GH28, GH43_29, GH43_4, GH51_1, GH51_2, GH97 |
| PUL0795 | RNA-seq, recombinant protein expression, growth assay | xyloglucan | Flavobacterium johnsoniae UW101 | <a href=https://pubmed.ncbi.nlm.nih.gov/39913342/>39913342</a> Metabolism of hemicelluloses by root-associated Bacteroidota species. ISME J. 2025 Jan 2;19(1):wraf022. doi: 10.1093/ismejo/wraf022. |
2025 Jan 2 | degradation | 12 | 8 | CE20, CE20, GH2, GH3, GH31_3, GH39, GH5_4, GH95, GH97 |
Copyright 2020 © YIN LAB, UNL. All rights reserved. Designed by Catie Ausland and Jinfang Zheng. Maintained by Yanbin Yin.