Browse dbCAN-PUL Entries

PULID Characterization Method(s) Substrate Organism Publication Publish Date Type Num Genes Num CAZymes CazyFamily
PUL0044 qRT-PCR, enzyme activity assay arabinoxylan Bacteroides ovatus <a href=https://pubmed.ncbi.nlm.nih.gov/26112186/>26112186</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/32266006/>32266006</a>
Glycan complexity dictates microbial resource allocation in the large intestine. Multimodular fused acetyl-feruloyl esterases from soil and gut Bacteroidetes improve xylanase depolymerization of recalcitrant biomass. Nat Commun. 2015 Jun 26;6:7481. doi: 10.1038/ncomms8481. Biotechnol Biofuels. 2020 Mar 31;13:60. doi: 10.1186/s13068-020-01698-9. eCollection 2020.
2015 Jun 26,2020 degradation 34 17 CE20, CE20, CE6, CE1, GH10, GH115, GH3, GH30, GH30_8, GH31_4, GH43_10, CBM91, GH43_12, CBM91, GH43_29, CBM6, GH95, GH97, GH98, CBM35
PUL0096 fosmid library screen, lectin binding assay host glycan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/31275257/>31275257</a>
Investigating Host Microbiota Relationships Through Functional Metagenomics. Front Microbiol. 2019 Jun 7;10:1286. doi: 10.3389/fmicb.2019.01286. eCollection 2019.
2019 degradation 22 12 CBM93, GH33, CE3, CE3, CE20, CE9, GH2, GH20, GH29, GH92, GH97
PUL0101 sequence homology analysis host glycan Bacteroides plebeius <a href=https://pubmed.ncbi.nlm.nih.gov/31275257/>31275257</a>
Investigating Host Microbiota Relationships Through Functional Metagenomics. Front Microbiol. 2019 Jun 7;10:1286. doi: 10.3389/fmicb.2019.01286. eCollection 2019.
2019 degradation 19 4 CBM67, GH78, GH115, GH3, GH97
PUL0105 fosmid library screen, lectin binding assay host glycan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/31275257/>31275257</a>
Investigating Host Microbiota Relationships Through Functional Metagenomics. Front Microbiol. 2019 Jun 7;10:1286. doi: 10.3389/fmicb.2019.01286. eCollection 2019.
2019 degradation 36 5 CBM67, GH78, CBM93, GH33, GH115, GH3, GH97
PUL0161 mass spectrometry, sequence homology analysis, gene deletion mutant and growth assay, microarray, qPCR alpha-mannan Bacteroides thetaiotaomicron <a href=https://pubmed.ncbi.nlm.nih.gov/30246424/>30246424</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/25567280/>25567280</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/18996345/>18996345</a>
Alpha- and beta-mannan utilization by marine Bacteroidetes. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Environ Microbiol. 2018 Nov;20(11):4127-4140. doi: 10.1111/1462-2920.14414. Epub 2018 Oct 16. Nature. 2015 Jan 8;517(7533):165-169. doi: 10.1038/nature13995. Cell Host Microbe. 2008 Nov 13;4(5):447-57. doi: 10.1016/j.chom.2008.09.007.
2018 Nov,2015 Jan 8,2008 Nov 13 degradation 26 6 GH125, GH67, GH76, GH92, GH97
PUL0204 qPCR, thin-layer chromatography, substrate binding assay starch Bacteroides thetaiotaomicron <a href=https://pubmed.ncbi.nlm.nih.gov/25841008/>25841008</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/18996345/>18996345</a>
Differential Metabolism of Exopolysaccharides from Probiotic Lactobacilli by the Human Gut Symbiont Bacteroides thetaiotaomicron. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Appl Environ Microbiol. 2015 Jun 15;81(12):3973-83. doi: 10.1128/AEM.00149-15. Epub 2015 Apr 3. Cell Host Microbe. 2008 Nov 13;4(5):447-57. doi: 10.1016/j.chom.2008.09.007.
2015 Jun 15,2008 Nov 13 degradation 7 3 GH13_36, GH13_46, GH97
PUL0218 enzyme activity assay arabinan termite gut metagenome <a href=https://pubmed.ncbi.nlm.nih.gov/25304507/>25304507</a>
Investigating the function of an arabinan utilization locus isolated from a termite gut community. Appl Environ Microbiol. 2015 Jan;81(1):31-9. doi: 10.1128/AEM.02257-14. Epub 2014 Oct 10.
2015 Jan degradation 24 5 GH146, GH97, GH43_4, GH51_1, GH51_2, GH43_29
PUL0289 enzyme activity assay xylan Flavobacterium johnsoniae <a href=https://pubmed.ncbi.nlm.nih.gov/29588659/>29588659</a>
A novel acetyl xylan esterase enabling complete deacetylation of substituted xylans. Biotechnol Biofuels. 2018 Mar 22;11:74. doi: 10.1186/s13068-018-1074-3. eCollection 2018.
2018 degradation 12 7 CE6, CE1, GH115, GH146, GH3, GH43_10, CBM91, GH43_12, CBM91, GH97
PUL0332 fosmid library screen, enzyme activity assay, thin-layer chromatography beta-glucan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/28091525/>28091525</a>
A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic. Sci Rep. 2017 Jan 16;7:40248. doi: 10.1038/srep40248.
2017 Jan 16 degradation 19 8 CE7, GH127, GH2, GH5_2, GH5_7, GH94, GH97
PUL0335 fosmid library screen, enzyme activity assay, thin-layer chromatography xylan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/28091525/>28091525</a>
A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic. Sci Rep. 2017 Jan 16;7:40248. doi: 10.1038/srep40248.
2017 Jan 16 degradation 31 5 GH13_46, GH158, GH16_3, GH3, GH97
PUL0338 fosmid library screen, enzyme activity assay, thin-layer chromatography xylan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/28091525/>28091525</a>
A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic. Sci Rep. 2017 Jan 16;7:40248. doi: 10.1038/srep40248.
2017 Jan 16 degradation 34 5 GH158, GH16_3, GH3, GH97, GT2
PUL0339 fosmid library screen, enzyme activity assay, thin-layer chromatography xylan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/28091525/>28091525</a>
A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic. Sci Rep. 2017 Jan 16;7:40248. doi: 10.1038/srep40248.
2017 Jan 16 degradation 24 4 GH16_3, GH20, GH3, GH97
PUL0365 RT-PCR starch Xanthomonas campestris pv. campestris <a href=https://pubmed.ncbi.nlm.nih.gov/17311090/>17311090</a>
Plant carbohydrate scavenging through tonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS One. 2007 Feb 21;2(2):e224. doi: 10.1371/journal.pone.0000224.
2007 Feb 21 degradation 8 4 GH13_2, GH13_23, GH78, GH97
PUL0421 microarray starch Bacteroides ovatus <a href=https://pubmed.ncbi.nlm.nih.gov/22205877/>22205877</a>
Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 2011 Dec;9(12):e1001221. doi: 10.1371/journal.pbio.1001221. Epub 2011 Dec 20.
2011 Dec degradation 7 3 GH13_10, GH13_46, GH97
PUL0473 growth assay alpha-glucan Flavobacterium johnsoniae <a href=https://pubmed.ncbi.nlm.nih.gov/19717629/>19717629</a>
Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl Environ Microbiol. 2009 Nov;75(21):6864-75. doi: 10.1128/AEM.01495-09. Epub 2009 Aug 28.
2009 Nov degradation 8 3 GH13, GH13, CBM26, GH97
PUL0485 growth assay, qRT-PCR, enzyme activity assay, affinity gel electrophoresis, crystallization, recombinant protein expression starch Flavobacterium johnsoniae <a href=https://pubmed.ncbi.nlm.nih.gov/19717629/>19717629</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/37269952/>37269952</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/38661728/>38661728</a>
Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Bacteroidota polysaccharide utilization system for branched dextran exopolysaccharides from lactic acid bacteria. Structural insights into alpha-(1-->6)-linkage preference of GH97 glucodextranase from Flavobacterium johnsoniae. Appl Environ Microbiol. 2009 Nov;75(21):6864-75. doi: 10.1128/AEM.01495-09. Epub 2009 Aug 28. J Biol Chem. 2023 Jul;299(7):104885. doi: 10.1016/j.jbc.2023.104885. Epub 2023 Jun 2. FEBS J. 2024 Jul;291(14):3267-3282. doi: 10.1111/febs.17139. Epub 2024 Apr 25.
2009 Nov,2023 Jul,2024 Jul degradation 9 5 GH27, CBM13, GH31, GH65, GH66, GH97
PUL0488 growth assay beta-mannan Flavobacterium johnsoniae <a href=https://pubmed.ncbi.nlm.nih.gov/19717629/>19717629</a>
Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl Environ Microbiol. 2009 Nov;75(21):6864-75. doi: 10.1128/AEM.01495-09. Epub 2009 Aug 28.
2009 Nov degradation 14 7 GH130_1, GH26, GH27, GH5_2, GH5_7, GH97
PUL0540 RNA-seq starch Bacteroides cellulosilyticus <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>
Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20.
2013 degradation 6 3 GH13, GH97
PUL0553 RT-PCR, qPCR xylan Bacteroides xylanisolvens <a href=https://pubmed.ncbi.nlm.nih.gov/27142817/>27142817</a>
Xylan degradation by the human gut Bacteroides xylanisolvens XB1A(T) involves two distinct gene clusters that are linked at the transcriptional level. BMC Genomics. 2016 May 4;17:326. doi: 10.1186/s12864-016-2680-8.
2016 May 4 degradation 22 13 CE6, CE1, GH10, GH115, GH3, GH31_4, GH43_10, CBM91, GH43_12, CBM91, GH43_29, CBM6, GH5_21, GH95, GH97
PUL0554 RNA-seq starch Bacteroides cellulosilyticus <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>
Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20.
2013 degradation 6 3 GH31, GH66, GH97
PUL0556 gene deletion mutant and growth assay, qRT-PCR, microarray, enzyme activity assay host glycan Bacteroides fragilis <a href=https://pubmed.ncbi.nlm.nih.gov/25139987/>25139987</a>
Efficient utilization of complex N-linked glycans is a selective advantage for Bacteroides fragilis in extraintestinal infections. Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12901-6. doi: 10.1073/pnas.1407344111. Epub 2014 Aug 19.
2014 Sep 2 degradation 8 2 GH18, GH97
PUL0559 gene deletion mutant and growth assay, growth assay, enzyme activity assay, microarray, qPCR pectin Bacteroides thetaiotaomicron <a href=https://pubmed.ncbi.nlm.nih.gov/28329766/>28329766</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/18996345/>18996345</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/22205877/>22205877</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/16968696/>16968696</a>
Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. Functional genomic and metabolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period. Nature. 2017 Apr 6;544(7648):65-70. doi: 10.1038/nature21725. Epub 2017 Mar 22. Cell Host Microbe. 2008 Nov 13;4(5):447-57. doi: 10.1016/j.chom.2008.09.007. PLoS Biol. 2011 Dec;9(12):e1001221. doi: 10.1371/journal.pbio.1001221. Epub 2011 Dec 20. J Biol Chem. 2006 Nov 24;281(47):36269-79. doi: 10.1074/jbc.M606509200. Epub 2006 Sep 12.
2017 Apr 6,2008 Nov 13,2011 Dec,2006 Nov 24 degradation 12 4 GH29, GH43_10, CBM91, GH43_34, CBM32, GH97
PUL0611 liquid chromatography and mass spectrometry alpha-glucan Winogradskyella sp. isolate Bin3 <a href=https://pubmed.ncbi.nlm.nih.gov/32071270/>32071270</a>
Metagenomic and Metaproteomic Insights into Photoautotrophic and Heterotrophic Interactions in a Synechococcus Culture. mBio. 2020 Feb 18;11(1):e03261-19. doi: 10.1128/mBio.03261-19.
2020 Feb 18 degradation 14 7 CE1, GH13_19, GH13_38, GH13_46, GH31, GH65, GH97
PUL0625 RNA-seq xylan Prevotella sp. PMUR <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a>
Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27.
2020 Dec 9 degradation 18 10 CE1, CE1, CE1, GH115, GH30_8, GH43_10, CBM91, GH43_12, CBM91, GH43_29, CBM6, GH95, GH97
PUL0648 high-performance anion-exchange chromatography, substrate binding assay, thin-layer chromatography, NMR, mass spectrometry, crystallization xylan Dysgonomonas mossii DSM 22836 <a href=https://pubmed.ncbi.nlm.nih.gov/33667545/>33667545</a>
A polysaccharide utilization locus from the gut bacterium Dysgonomonas mossii encodes functionally distinct carbohydrate esterases. J Biol Chem. 2021 Jan-Jun;296:100500. doi: 10.1016/j.jbc.2021.100500. Epub 2021 Mar 2.
2021 Jan-Jun degradation 37 21 CE1, CE1, CE1, CE20, CE20, CE6, GH10, GH115, GH146, GH31_4, GH43_1, GH43_10, CBM91, GH43_12, CBM91, GH43_29, GH43_29, CBM6, GH51_2, GH67, GH8, GH97
PUL0669 clone, high-performance anion-exchange chromatography, enzymatic product analysis xylan Bacteroides eggerthii 1_2_48FAA <a href=https://pubmed.ncbi.nlm.nih.gov/34480044/>34480044</a>
Characterization of a novel multidomain CE15-GH8 enzyme encoded by a polysaccharide utilization locus in the human gut bacterium Bacteroides eggerthii. Sci Rep. 2021 Sep 3;11(1):17662. doi: 10.1038/s41598-021-96659-z.
2021 Sep 3 degradation 26 15 CE1, CE15, GH8, CE20, CE20, CE6, GH10, GH115, GH31_4, GH35, GH43_1, GH43_10, CBM91, GH43_12, CBM91, GH5_21, GH67, GH95, GH97
PUL0680 gene deletion mutant and growth assay, clone and expression, qRT-PCR, high-performance anion-exchange chromatography, crystallization, recombinant protein expression xyloglucan Bacteroides uniformis ATCC 8492 <a href=https://pubmed.ncbi.nlm.nih.gov/34995484/>34995484</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/34731054/>34731054</a>
Polysaccharide utilization loci in Bacteroides determine population fitness and community-level interactions. Cell Surface Xyloglucan Recognition and Hydrolysis by the Human Gut Commensal Bacteroides uniformis. Cell Host Microbe. 2022 Feb 9;30(2):200-215.e12. doi: 10.1016/j.chom.2021.12.006. Epub 2022 Jan 6. Appl Environ Microbiol. 2022 Jan 11;88(1):e0156621. doi: 10.1128/AEM.01566-21. Epub 2021 Nov 3.
2022 Feb 9,2022 Jan 11 degradation 15 10 CE20, GH43_16, CBM6, GH2, GH29, GH2, GH2, GH31_4, GH42, GH43_33, GH5_4, GH97
PUL0682 enzyme activity assay, affinity gel electrophoresis xylan Bacteroidaceae bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/35110564/>35110564</a>
Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides. Nat Commun. 2022 Feb 2;13(1):629. doi: 10.1038/s41467-022-28310-y.
2022 Feb 2 degradation 3 3 CBM89, GH10, GH43_12, CBM91, GH97
PUL0690 electrophoretic mobility shift assay, qRT-PCR, gene deletion mutant and growth assay raffinose family oligosaccharides Bacteroides thetaiotaomicron VPI-5482 <a href=https://pubmed.ncbi.nlm.nih.gov/34251866/>34251866</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/37598339/>37598339</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/39330254/>39330254</a>
A Novel Family of RNA-Binding Proteins Regulate Polysaccharide Metabolism in Bacteroides thetaiotaomicron. Dynamic genetic adaptation of Bacteroides thetaiotaomicron during murine gut colonization. Determinants of raffinose family oligosaccharide use in Bacteroides species. J Bacteriol. 2021 Oct 12;203(21):e0021721. doi: 10.1128/JB.00217-21. Epub 2021 Jul 12. Cell Rep. 2023 Aug 29;42(8):113009. doi: 10.1016/j.celrep.2023.113009. Epub 2023 Aug 21. J Bacteriol. 2024 Oct 24;206(10):e0023524. doi: 10.1128/jb.00235-24. Epub 2024 Sep 27.
2021 Oct 12,2023 Aug 29,2024 Oct 24 degradation 8 4 GH3, GH43_17, GH92, GH97
PUL0705 fluorophore-assisted carbohydrate electrophoresis (FACE), dinitrosalicylic acid-assay (DNS-assay), HPLC, clone and expression xylan Flavimarina sp. Hel_I_48 <a href=https://pubmed.ncbi.nlm.nih.gov/37121608/>37121608</a>
Marine Bacteroidetes enzymatically digest xylans from terrestrial plants. Environ Microbiol. 2023 Sep;25(9):1713-1727. doi: 10.1111/1462-2920.16390. Epub 2023 Apr 30.
2023 Sep degradation 14 8 CE6, CE1, CE1, GH10, GH43_10, CBM91, GH43_12, CBM91, GH8, GH95, GH97
PUL0714 clone and expression, crystallization, isothermal titration calorimetry (ITC), thin-layer chromatography, Western Blot, gene mutant starch Bacteroides ovatus strain ATCC 8483  <a href=https://pubmed.ncbi.nlm.nih.gov/37500984/>37500984</a>
BoGH13A(Sus) from Bacteroides ovatus represents a novel alpha-amylase used for Bacteroides starch breakdown in the human gut. Cell Mol Life Sci. 2023 Jul 28;80(8):232. doi: 10.1007/s00018-023-04812-w.
2023 Jul 28 degradation 8 3 GH13_10, GH13_46, GH97
PUL0716 growth assay, RT-PCR arabinan Mesoflavibacter profundi MTRN7 <a href=https://pubmed.ncbi.nlm.nih.gov/37550707/>37550707</a>
Deep-sea Bacteroidetes from the Mariana Trench specialize in hemicellulose and pectin degradation typically associated with terrestrial systems. Microbiome. 2023 Aug 7;11(1):175. doi: 10.1186/s40168-023-01618-7.
2023 Aug 7 degradation 16 8 GH127, GH43_26, GH43_29, GH43_4, GH43_5, GH51_1, GH51_2, GH97
PUL0719 RNA-seq, growth assay starch Xanthomonas citri pv. citri str. 306 <a href=https://pubmed.ncbi.nlm.nih.gov/37855631/>37855631</a>
Plant structural and storage glucans trigger distinct transcriptional responses that modulate the motility of Xanthomonas pathogens. Microbiol Spectr. 2023 Dec 12;11(6):e0228023. doi: 10.1128/spectrum.02280-23. Epub 2023 Oct 19.
2023 Dec 12 degradation 7 3 GH13_2, GH13_23, GH97
PUL0748 Reducing End Assay, HPAEC-PAD glycogen Pontibacter sp. SGAir0037 <a href=https://pubmed.ncbi.nlm.nih.gov/38930854/>38930854</a>
Characterization of Two Glycoside Hydrolases of Family GH13 and GH57, Present in a Polysaccharide Utilization Locus (PUL) of Pontibacter sp. SGAir0037. Molecules. 2024 Jun 12;29(12):2788. doi: 10.3390/molecules29122788.
2024 Jun 12 degradation 14 10 CBM48, GH13_10, CBM48, GH13_9, GH13, GH13_16, GH13_26, GH13_3, GH57, GH77, GH97
PUL0766 RNA-seq, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography starch Segatella copri DSM 18205 <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a>
Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5.
2025 Jan 31 degradation 5 2 GH13_44, GH97
PUL0773 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Rhodopirellula sp. SWK7 <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 23 3 GH116, GH29, GH97
PUL0793 enzyme activity assay, quantification of reaction product reducing ends, RNA-seq, differential gene expression, NMR, MALDI-TOF/MS, gas chromatography, mass spectrometry, bicinchoninic acid (BCA) assay, recombinant protein expression arabinan Bacteroides intestinalis DSM 17393 <a href=https://pubmed.ncbi.nlm.nih.gov/39443715/>39443715</a>
In vivo manipulation of human gut Bacteroides fitness by abiotic oligosaccharides. Nat Chem Biol. 2025 Apr;21(4):544-554. doi: 10.1038/s41589-024-01763-6. Epub 2024 Oct 23.
2025 Apr degradation 14 6 CE1, GH127, GH146, GH43_34, CBM32, GH97
PUL0794 enzyme activity assay, quantification of reaction product reducing ends, RNA-seq, differential gene expression, NMR, MALDI-TOF/MS, gas chromatography, mass spectrometry, bicinchoninic acid (BCA) assay, recombinant protein expression arabinan Bacteroides intestinalis DSM 17393 <a href=https://pubmed.ncbi.nlm.nih.gov/39443715/>39443715</a>
In vivo manipulation of human gut Bacteroides fitness by abiotic oligosaccharides. Nat Chem Biol. 2025 Apr;21(4):544-554. doi: 10.1038/s41589-024-01763-6. Epub 2024 Oct 23.
2025 Apr degradation 23 8 GH146, GH28, GH43_29, GH43_4, GH51_1, GH51_2, GH97
PUL0795 RNA-seq, recombinant protein expression, growth assay xyloglucan Flavobacterium johnsoniae UW101 <a href=https://pubmed.ncbi.nlm.nih.gov/39913342/>39913342</a>
Metabolism of hemicelluloses by root-associated Bacteroidota species. ISME J. 2025 Jan 2;19(1):wraf022. doi: 10.1093/ismejo/wraf022.
2025 Jan 2 degradation 12 8 CE20, CE20, GH2, GH3, GH31_3, GH39, GH5_4, GH95, GH97