Browse dbCAN-PUL Entries

PULID Characterization Method(s) Substrate Organism Publication Publish Date Type Num Genes Num CAZymes CazyFamily
PUL0044 qRT-PCR, enzyme activity assay arabinoxylan Bacteroides ovatus <a href=https://pubmed.ncbi.nlm.nih.gov/26112186/>26112186</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/32266006/>32266006</a>
Glycan complexity dictates microbial resource allocation in the large intestine. Multimodular fused acetyl-feruloyl esterases from soil and gut Bacteroidetes improve xylanase depolymerization of recalcitrant biomass. Nat Commun. 2015 Jun 26;6:7481. doi: 10.1038/ncomms8481. Biotechnol Biofuels. 2020 Mar 31;13:60. doi: 10.1186/s13068-020-01698-9. eCollection 2020.
2015 Jun 26,2020 degradation 34 17 CE20, CE20, CE6, CE1, GH10, GH115, GH3, GH30, GH30_8, GH31_4, GH43_10, CBM91, GH43_12, CBM91, GH43_29, CBM6, GH95, GH97, GH98, CBM35
PUL0065 bicinchoninic acid (BCA) reducing-sugar assay, enzyme product analysis, affinity gel electrophoresis, isothermal titration calorimetry (ITC) xyloglucan Bacteroides uniformis <a href=https://pubmed.ncbi.nlm.nih.gov/31420336/>31420336</a>
Adaptation of Syntenic Xyloglucan Utilization Loci of Human Gut Bacteroidetes to Polysaccharide Side Chain Diversity. Appl Environ Microbiol. 2019 Oct 1;85(20):e01491-19. doi: 10.1128/AEM.01491-19. Print 2019 Oct 15.
2019 Oct 15 degradation 13 6 GH2, GH3, GH31_4, GH43_12, CBM91, GH5_4, GH95
PUL0066 bicinchoninic acid (BCA) reducing-sugar assay, enzyme product analysis, affinity gel electrophoresis, isothermal titration calorimetry (ITC) xyloglucan Bacteroides fluxus <a href=https://pubmed.ncbi.nlm.nih.gov/31420336/>31420336</a>
Adaptation of Syntenic Xyloglucan Utilization Loci of Human Gut Bacteroidetes to Polysaccharide Side Chain Diversity. Appl Environ Microbiol. 2019 Oct 1;85(20):e01491-19. doi: 10.1128/AEM.01491-19. Print 2019 Oct 15.
2019 Oct 15 degradation 13 6 GH2, GH3, GH31_4, GH43_12, CBM91, GH5_4, GH95
PUL0067 bicinchoninic acid (BCA) reducing-sugar assay, enzyme product analysis, affinity gel electrophoresis, isothermal titration calorimetry (ITC) xyloglucan Dysgonomonas gadei <a href=https://pubmed.ncbi.nlm.nih.gov/31420336/>31420336</a>
Adaptation of Syntenic Xyloglucan Utilization Loci of Human Gut Bacteroidetes to Polysaccharide Side Chain Diversity. Appl Environ Microbiol. 2019 Oct 1;85(20):e01491-19. doi: 10.1128/AEM.01491-19. Print 2019 Oct 15.
2019 Oct 15 degradation 11 6 GH2, GH3, GH31_4, GH43_12, CBM91, GH5_4, GH95
PUL0084 label-free quantitative proteomics, functional enrichment analysis, enzyme activity assay cellulose Ruminiclostridium papyrosolvens <a href=https://pubmed.ncbi.nlm.nih.gov/31338125/>31338125</a>
Secretomic analyses of Ruminiclostridium papyrosolvens reveal its enzymatic basis for lignocellulose degradation. Biotechnol Biofuels. 2019 Jul 15;12:183. doi: 10.1186/s13068-019-1522-8. eCollection 2019.
2019 degradation 12 12 CE1, CBM6, GH10, CBM6, GH27, CBM6, GH30_8, CBM6, GH43_10, CBM91, CBM6, GH43_29, CBM6, GH59, CBM6, GH62, CBM6, GH62, CBM6, CE6, GH95, CBM32
PUL0114 recombinant protein expression, enzyme activity assay arabinan Ruminiclostridium cellulolyticum <a href=https://pubmed.ncbi.nlm.nih.gov/31198441/>31198441</a>
The xyl-doc gene cluster of Ruminiclostridium cellulolyticum encodes GH43- and GH62-alpha-l-arabinofuranosidases with complementary modes of action. Biotechnol Biofuels. 2019 Jun 10;12:144. doi: 10.1186/s13068-019-1483-y. eCollection 2019.
2019 degradation 14 14 CE1, CBM6, GH10, CBM6, GH146, CBM22, GH27, CBM6, GH2, CBM6, GH30_8, CBM6, GH43_10, CBM91, CBM6, GH43_16, CBM6, GH43_29, CBM6, GH59, CBM6, GH62, CBM6, GH62, CBM6, CE6, GH95, CBM32, CBM6
PUL0189 RNA-seq, RT-PCR, qPCR pectin Bacteroides xylanisolvens <a href=https://pubmed.ncbi.nlm.nih.gov/26920945/>26920945</a>
Unraveling the pectinolytic function of Bacteroides xylanisolvens using a RNA-seq approach and mutagenesis. BMC Genomics. 2016 Feb 27;17:147. doi: 10.1186/s12864-016-2472-1.
2016 Feb 27 degradation 17 9 CBM67, GH78, CBM67, GH78, GH33, CE19, GH140, GH28, GH43_18, GH92, GH95, PL1_2
PUL0215 qPCR, enzyme activity assay xyloglucan Cellvibrio japonicus <a href=https://pubmed.ncbi.nlm.nih.gov/25171165/>25171165</a>
A complex gene locus enables xyloglucan utilization in the model saprophyte Cellvibrio japonicus. Mol Microbiol. 2014 Oct;94(2):418-33. doi: 10.1111/mmi.12776. Epub 2014 Sep 17.
2014 Oct degradation 4 3 GH31_4, GH35, GH95
PUL0224 RT-PCR, qRT-PCR, ion trap liquid chromatography, mass spectrometry, target decoy database analysis, high-performance anion-exchange chromatography cellulose Ruminiclostridium cellulolyticum <a href=https://pubmed.ncbi.nlm.nih.gov/23418511/>23418511</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/20013800/>20013800</a>
A two-component system (XydS/R) controls the expression of genes encoding CBM6-containing proteins in response to straw in Clostridium cellulolyticum. Modulation of cellulosome composition in Clostridium cellulolyticum: adaptation to the polysaccharide environment revealed by proteomic and carbohydrate-active enzyme analyses. PLoS One. 2013;8(2):e56063. doi: 10.1371/journal.pone.0056063. Epub 2013 Feb 13. Proteomics. 2010 Feb;10(3):541-54. doi: 10.1002/pmic.200900311.
2013,2010 Feb degradation 16 14 CE1, CBM6, GH10, CBM6, GH146, CBM22, GH27, CBM6, GH2, CBM6, GH30_8, CBM6, GH43_10, CBM91, CBM6, GH43_16, CBM6, GH43_29, CBM6, GH59, CBM6, GH62, CBM6, GH62, CBM6, CE6, GH95, CBM32, CBM6
PUL0245 enzyme activity assay, gene deletion mutant and growth assay, Western Blot fucose Streptococcus pneumoniae <a href=https://pubmed.ncbi.nlm.nih.gov/24333485/>24333485</a>
Structural and functional analysis of fucose-processing enzymes from Streptococcus pneumoniae. J Mol Biol. 2014 Apr 3;426(7):1469-82. doi: 10.1016/j.jmb.2013.12.006. Epub 2013 Dec 12.
2014 Apr 3 degradation 11 2 GH95, GH98, CBM47, CBM47, CBM47
PUL0262 RNA-seq xylan Bacteroides cellulosilyticus <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>
Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20.
2013 degradation 12 6 CE1, CE6, GH95, GH10, GH5_21, GH8
PUL0299 gene trait matching exercise human milk oligosaccharide Bifidobacterium longum <a href=https://pubmed.ncbi.nlm.nih.gov/29310579/>29310579</a>
Gene-trait matching across the Bifidobacterium longum pan-genome reveals considerable diversity in carbohydrate catabolism among human infant strains. BMC Genomics. 2018 Jan 8;19(1):33. doi: 10.1186/s12864-017-4388-9.
2018 Jan 8 degradation 13 2 GH29, GH95
PUL0342 enzyme activity assay, gene deletion mutant and growth assay xylan Prevotella ruminicola <a href=https://pubmed.ncbi.nlm.nih.gov/19304844/>19304844</a>
Biochemical analysis of a beta-D-xylosidase and a bifunctional xylanase-ferulic acid esterase from a xylanolytic gene cluster in Prevotella ruminicola 23. J Bacteriol. 2009 May;191(10):3328-38. doi: 10.1128/JB.01628-08. Epub 2009 Mar 20.
2009 May degradation 5 3 GH10, CE1, GH3, GH95
PUL0345 qRT-PCR, enzyme activity assay xylan Bacteroides intestinalis <a href=https://pubmed.ncbi.nlm.nih.gov/27681607/>27681607</a>
Bacteroides intestinalis DSM 17393, a member of the human colonic microbiome, upregulates multiple endoxylanases during growth on xylan. Sci Rep. 2016 Sep 29;6:34360. doi: 10.1038/srep34360.
2016 Sep 29 degradation 31 13 CE1, CE20, CE20, CE6, GH95, GH10, GH10, GH43_12, CBM91, GH115, GH35, GH43_1, GH5_21, GH67, GH8
PUL0368 microarray, Western Blot human milk oligosaccharide Bifidobacterium longum subsp. infantis <a href=https://pubmed.ncbi.nlm.nih.gov/19033196/>19033196</a>
The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18964-9. doi: 10.1073/pnas.0809584105. Epub 2008 Nov 24.
2008 Dec 2 degradation 30 5 GH2, GH20, GH29, GH33, GH95
PUL0479 growth assay pectin Flavobacterium johnsoniae <a href=https://pubmed.ncbi.nlm.nih.gov/19717629/>19717629</a>
Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl Environ Microbiol. 2009 Nov;75(21):6864-75. doi: 10.1128/AEM.01495-09. Epub 2009 Aug 28.
2009 Nov degradation 20 11 GH2, GH27, GH28, GH43_19, GH43_34, GH51_2, GH89, GH92, GH95
PUL0482 growth assay pectin Flavobacterium johnsoniae <a href=https://pubmed.ncbi.nlm.nih.gov/19717629/>19717629</a>
Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl Environ Microbiol. 2009 Nov;75(21):6864-75. doi: 10.1128/AEM.01495-09. Epub 2009 Aug 28.
2009 Nov degradation 27 21 CBM67, GH78, CE19, CE20, CE8, GH106, GH127, GH137, GH139, GH140, GH142, GH143, GH2, GH28, GH43_18, GH78, GH95, PL1_2, PL29
PUL0553 RT-PCR, qPCR xylan Bacteroides xylanisolvens <a href=https://pubmed.ncbi.nlm.nih.gov/27142817/>27142817</a>
Xylan degradation by the human gut Bacteroides xylanisolvens XB1A(T) involves two distinct gene clusters that are linked at the transcriptional level. BMC Genomics. 2016 May 4;17:326. doi: 10.1186/s12864-016-2680-8.
2016 May 4 degradation 22 13 CE6, CE1, GH10, GH115, GH3, GH31_4, GH43_10, CBM91, GH43_12, CBM91, GH43_29, CBM6, GH5_21, GH95, GH97
PUL0558 gene deletion mutant and growth assay, growth assay, enzyme activity assay pectin Bacteroides thetaiotaomicron <a href=https://pubmed.ncbi.nlm.nih.gov/28329766/>28329766</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/22205877/>22205877</a>
Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. Nature. 2017 Apr 6;544(7648):65-70. doi: 10.1038/nature21725. Epub 2017 Mar 22. PLoS Biol. 2011 Dec;9(12):e1001221. doi: 10.1371/journal.pbio.1001221. Epub 2011 Dec 20.
2017 Apr 6,2011 Dec degradation 50 21 CBM67, GH78, CBM67, GH78, GH33, CE19, CE20, GH105, GH106, GH127, GH137, GH2, CBM57, CBM97, GH138, GH139, GH140, GH141, GH143, GH142, GH2, GH28, GH43_18, GH78, GH95, PL1_2
PUL0598 liquid chromatography and mass spectrometry, differential gene expression xylan Clostridium cellulovorans 743B <a href=https://pubmed.ncbi.nlm.nih.gov/26020016/>26020016</a>
Elucidation of the recognition mechanisms for hemicellulose and pectin in Clostridium cellulovorans using intracellular quantitative proteome analysis. AMB Express. 2015 May 23;5:29. doi: 10.1186/s13568-015-0115-6. eCollection 2015.
2015 degradation 4 1 GH95
PUL0609 enzyme activity assay, clone and expression, liquid chromatography and mass spectrometry, thin-layer chromatography, MALDI-TOF/MS human milk oligosaccharide Roseburia inulinivorans DSM 16841 <a href=https://pubmed.ncbi.nlm.nih.gov/32620774/>32620774</a>
Butyrate producing colonic Clostridiales metabolise human milk oligosaccharides and cross feed on mucin via conserved pathways. Nat Commun. 2020 Jul 3;11(1):3285. doi: 10.1038/s41467-020-17075-x.
2020 Jul 3 degradation 11 4 GH112, GH136, CBM32, GH95
PUL0625 RNA-seq xylan Prevotella sp. PMUR <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a>
Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27.
2020 Dec 9 degradation 18 10 CE1, CE1, CE1, GH115, GH30_8, GH43_10, CBM91, GH43_12, CBM91, GH43_29, CBM6, GH95, GH97
PUL0669 clone, high-performance anion-exchange chromatography, enzymatic product analysis xylan Bacteroides eggerthii 1_2_48FAA <a href=https://pubmed.ncbi.nlm.nih.gov/34480044/>34480044</a>
Characterization of a novel multidomain CE15-GH8 enzyme encoded by a polysaccharide utilization locus in the human gut bacterium Bacteroides eggerthii. Sci Rep. 2021 Sep 3;11(1):17662. doi: 10.1038/s41598-021-96659-z.
2021 Sep 3 degradation 26 15 CE1, CE15, GH8, CE20, CE20, CE6, GH10, GH115, GH31_4, GH35, GH43_1, GH43_10, CBM91, GH43_12, CBM91, GH5_21, GH67, GH95, GH97
PUL0673 NMR, substrate binding assay, liquid chromatography and mass spectrometry human milk oligosaccharide Bifidobacterium pseudocatenulatum DSM20438 <a href=https://pubmed.ncbi.nlm.nih.gov/34757822/>34757822</a>
Fucosylated Human Milk Oligosaccharide Foraging within the Species Bifidobacterium pseudocatenulatum Is Driven by Glycosyl Hydrolase Content and Specificity. Appl Environ Microbiol. 2022 Jan 25;88(2):e0170721. doi: 10.1128/AEM.01707-21. Epub 2021 Nov 10.
2022 Jan 25 degradation 8 1 GH95
PUL0688 clone and expression, crystallization, recombinant protein expression, thin-layer chromatography galactooligosaccharide Bacteroides thetaiotaomicron VPI-5482 <a href=https://pubmed.ncbi.nlm.nih.gov/34149636/>34149636</a>
Analysis of Two SusE-Like Enzymes From Bacteroides thetaiotaomicron Reveals a Potential Degradative Capacity for This Protein Family. Front Microbiol. 2021 Jun 4;12:645765. doi: 10.3389/fmicb.2021.645765. eCollection 2021.
2021 degradation 5 1 GH95
PUL0702 enzyme activity assay, gene deletion mutant and growth assay xyloglucan Xanthomonas citri pv. citri str. 306 <a href=https://pubmed.ncbi.nlm.nih.gov/34193873/>34193873</a>
Xyloglucan processing machinery in Xanthomonas pathogens and its role in the transcriptional activation of virulence factors. Nat Commun. 2021 Jun 30;12(1):4049. doi: 10.1038/s41467-021-24277-4.
2021 Jun 30 degradation 8 5 CE20, CE20, GH31_4, GH35, GH74, GH95
PUL0705 fluorophore-assisted carbohydrate electrophoresis (FACE), dinitrosalicylic acid-assay (DNS-assay), HPLC, clone and expression xylan Flavimarina sp. Hel_I_48 <a href=https://pubmed.ncbi.nlm.nih.gov/37121608/>37121608</a>
Marine Bacteroidetes enzymatically digest xylans from terrestrial plants. Environ Microbiol. 2023 Sep;25(9):1713-1727. doi: 10.1111/1462-2920.16390. Epub 2023 Apr 30.
2023 Sep degradation 14 8 CE6, CE1, CE1, GH10, GH43_10, CBM91, GH43_12, CBM91, GH8, GH95, GH97
PUL0727 SDS-PAGE, NMR, enzyme activity assay, size-exclusion chromatography (SEC) fucoidan Wenyingzhuangia fucanilytica strain CZ1127 <a href=https://pubmed.ncbi.nlm.nih.gov/38203394/>38203394</a>
The Discovery of the Fucoidan-Active Endo-1-->4-alpha-L-Fucanase of the GH168 Family, Which Produces Fucoidan Derivatives with Regular Sulfation and Anticoagulant Activity. Int J Mol Sci. 2023 Dec 22;25(1):218. doi: 10.3390/ijms25010218.
2023 Dec 22 degradation 30 16 GH107, GH117, GH141, GH168, GH29, GH43_2, GH95
PUL0764 RNA-seq, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography Hemicellulose Segatella copri DSM 18205 <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a>
Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5.
2025 Jan 31 degradation 4 4 GH43_10, CBM91, GH43_29, CBM6, GH43_29, CBM6, GH43_10, CBM91, GH95
PUL0767 RNA-seq, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography pectin Segatella copri DSM 18205 <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a>
Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5.
2025 Jan 31 degradation 15 6 CE8, GH28, GH28, GH105, GH43_10, CBM91, GH95, PL1_2
PUL0774 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Rhodopirellula sp. SWK7 <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 23 8 GH117, GH141, GH168, GH29, GH95
PUL0776 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Rhodopirellula sp. SWK7 <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 32 10 CE19, CBM51, CE20, GH115, GH116, GH117, GH117, GH29, GH95
PUL0778 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Neorhodopirellula lusitana <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 18 4 GH172, GH29, GH3, GH95
PUL0780 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Neorhodopirellula lusitana <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 24 8 CBM32, CE12, CE6, GH141, GH29, GH95
PUL0781 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Neorhodopirellula lusitana <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 17 4 GH116, GH29, GH95
PUL0783 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Neorhodopirellula lusitana <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 20 6 CBM51, GH115, GH172, GH28, GH29, GH95
PUL0784 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Neorhodopirellula lusitana <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 8 2 GH29, GH95
PUL0785 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Neorhodopirellula lusitana <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 22 5 CE20, CE20, GH95, CE7, GH117, GH168
PUL0786 RNA-seq, reducing-sugar assay, growth assay, high performance gel permeation chromatography, gas chromatography, RNA-seq, differential gene expression pectic polysaccharide Bacteroides ovatus strain ATCC 8483 <a href=https://pubmed.ncbi.nlm.nih.gov/38890895/>38890895</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/39892338/>39892338</a>
The Utilization by Bacteroides spp. of a Purified Polysaccharide from Fuzhuan Brick Tea. In vitro fermentation of a purified fraction of polysaccharides from the root of Brassica rapa L. by human gut microbiota and its interaction with Bacteroides ovatus. Foods. 2024 May 26;13(11):1666. doi: 10.3390/foods13111666. Food Chem. 2025 May 1;473:143109. doi: 10.1016/j.foodchem.2025.143109. Epub 2025 Jan 27.
2024 May 26,2025 May 1 degradation 26 14 CBM67, GH78, CBM67, GH78, GH33, CE19, GH105, GH130_2, GH140, GH143, GH142, GH163, GH18, GH28, GH43_18, GH92, GH95, PL1_2
PUL0795 RNA-seq, recombinant protein expression, growth assay xyloglucan Flavobacterium johnsoniae UW101 <a href=https://pubmed.ncbi.nlm.nih.gov/39913342/>39913342</a>
Metabolism of hemicelluloses by root-associated Bacteroidota species. ISME J. 2025 Jan 2;19(1):wraf022. doi: 10.1093/ismejo/wraf022.
2025 Jan 2 degradation 12 8 CE20, CE20, GH2, GH3, GH31_3, GH39, GH5_4, GH95, GH97