Browse dbCAN-PUL Entries

PULID Characterization Method(s) Substrate Organism Publication Publish Date Type Num Genes Num CAZymes CazyFamily
PUL0001 RNA-seq, substrate binding assay, enzyme activity assay, mass spectrometry beta-mannan Roseburia intestinalis <a href=https://pubmed.ncbi.nlm.nih.gov/30796211/>30796211</a>
The human gut Firmicute Roseburia intestinalis is a primary degrader of dietary beta-mannans. Nat Commun. 2019 Feb 22;10(1):905. doi: 10.1038/s41467-019-08812-y.
2019 Feb 22 degradation 15 9 CE17, CBM35inCE17, CE2, GH1, GH113, GH130_1, GH130_2, GH36
PUL0030 isothermal calorimetric titration, gene deletion mutant and growth assay, enzyme activity assay galactomannan Bacillus sp. N16-5 <a href=https://pubmed.ncbi.nlm.nih.gov/26978267/>26978267</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/30351049/>30351049</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/29360976/>29360976</a>
A Novel Manno-Oligosaccharide Binding Protein Identified in Alkaliphilic Bacillus sp. N16-5 Is Involved in Mannan Utilization. Galactomannan Degrading Enzymes from the Mannan Utilization Gene Cluster of Alkaliphilic Bacillus sp. N16-5 and Their Synergy on Galactomannan Degradation. Transcriptional regulation of the mannan utilization genes in the alkaliphilic Bacillus sp. N16-5. PLoS One. 2016 Mar 15;11(3):e0150059. doi: 10.1371/journal.pone.0150059. eCollection 2016. J Agric Food Chem. 2018 Oct 24;66(42):11055-11063. doi: 10.1021/acs.jafc.8b03878. Epub 2018 Oct 15. FEMS Microbiol Lett. 2018 Feb 1;365(4). doi: 10.1093/femsle/fnx280.
2016,2018 Oct 24,2018 Feb 1 degradation 12 6 CE7, GH130_1, GH130_2, GH27
PUL0050 fosmid library screen cellulose feces metagenome <a href=https://pubmed.ncbi.nlm.nih.gov/29601586/>29601586</a>
Two new gene clusters involved in the degradation of plant cell wall from the fecal microbiota of Tunisian dromedary. PLoS One. 2018 Mar 30;13(3):e0194621. doi: 10.1371/journal.pone.0194621. eCollection 2018.
2018 degradation 20 6 GH130_1, GH26, GH3, GH5_4, GH94
PUL0129 enzyme activity assay beta-mannan gut metagenome <a href=https://pubmed.ncbi.nlm.nih.gov/30356154/>30356154</a>
Interspecies cross-feeding orchestrates carbon degradation in the rumen ecosystem. Nat Microbiol. 2018 Nov;3(11):1274-1284. doi: 10.1038/s41564-018-0225-4. Epub 2018 Oct 24.
2018 Nov degradation 12 6 CE7, GH130_1, GH26, GH5_4
PUL0164 mass spectrometry, sequence homology analysis, differential gene expression beta-mannan Leeuwenhoekiella sp. MAR_2009_132 <a href=https://pubmed.ncbi.nlm.nih.gov/30246424/>30246424</a>
Alpha- and beta-mannan utilization by marine Bacteroidetes. Environ Microbiol. 2018 Nov;20(11):4127-4140. doi: 10.1111/1462-2920.14414. Epub 2018 Oct 16.
2018 Nov degradation 19 12 CBM8, CE2, CE20, GH130_1, GH26, GH27, GH3, GH5_2, GH5_7, GH9
PUL0165 mass spectrometry, sequence homology analysis, differential gene expression beta-mannan Salegentibacter sp. Hel_I_6 <a href=https://pubmed.ncbi.nlm.nih.gov/30246424/>30246424</a>
Alpha- and beta-mannan utilization by marine Bacteroidetes. Environ Microbiol. 2018 Nov;20(11):4127-4140. doi: 10.1111/1462-2920.14414. Epub 2018 Oct 16.
2018 Nov degradation 16 8 CE20, GH130_1, GH26, GH27, GH30, GH5_2, GH9
PUL0167 mass spectrometry, sequence homology analysis beta-mannan Bacteroides ovatus <a href=https://pubmed.ncbi.nlm.nih.gov/30246424/>30246424</a>
Alpha- and beta-mannan utilization by marine Bacteroidetes. Environ Microbiol. 2018 Nov;20(11):4127-4140. doi: 10.1111/1462-2920.14414. Epub 2018 Oct 16.
2018 Nov degradation 12 4 GH130_1, GH26, GH36
PUL0175 enzyme activity assay galactomannan Cellvibrio mixtus <a href=https://pubmed.ncbi.nlm.nih.gov/16842369/>16842369</a>
Galactomannan hydrolysis and mannose metabolism in Cellvibrio mixtus. FEMS Microbiol Lett. 2006 Aug;261(1):123-32. doi: 10.1111/j.1574-6968.2006.00342.x.
2006 Aug degradation 4 3 GH130_1, GH27, GH5_7
PUL0178 enzyme activity assay, enzyme specificity assay, substrate specificity assay galactomannan Bacteroides ovatus <a href=https://pubmed.ncbi.nlm.nih.gov/27288925/>27288925</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/22205877/>22205877</a>
A beta-mannan utilization locus in Bacteroides ovatus involves a GH36 alpha-galactosidase active on galactomannans. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. FEBS Lett. 2016 Jul;590(14):2106-18. doi: 10.1002/1873-3468.12250. Epub 2016 Jun 28. PLoS Biol. 2011 Dec;9(12):e1001221. doi: 10.1371/journal.pbio.1001221. Epub 2011 Dec 20.
2016 Jul,2011 Dec degradation 14 4 GH130_1, GH26, GH36
PUL0179 enzyme activity assay, enzyme specificity assay, substrate specificity assay galactomannan Bacteroides ovatus <a href=https://pubmed.ncbi.nlm.nih.gov/27288925/>27288925</a>
A beta-mannan utilization locus in Bacteroides ovatus involves a GH36 alpha-galactosidase active on galactomannans. FEBS Lett. 2016 Jul;590(14):2106-18. doi: 10.1002/1873-3468.12250. Epub 2016 Jun 28.
2016 Jul degradation 15 4 CE7, GH130_1, GH26
PUL0239 fosmid library screen, sequence homology analysis cellulose Prevotella sp. Sc00026 <a href=https://pubmed.ncbi.nlm.nih.gov/24448980/>24448980</a>
Analysis of the bovine rumen microbiome reveals a diversity of Sus-like polysaccharide utilization loci from the bacterial phylum Bacteroidetes. J Ind Microbiol Biotechnol. 2014 Mar;41(3):601-6. doi: 10.1007/s10295-013-1395-y. Epub 2014 Jan 22.
2014 Mar degradation 16 9 CE20, CE7, GH130_1, GH26, GH26, GH5_4, GH3, GH36, GH5_7
PUL0408 enzyme activity assay, thin-layer chromatography beta-mannan Bacteroides fragilis <a href=https://pubmed.ncbi.nlm.nih.gov/24217874/>24217874</a>
The mannobiose-forming exo-mannanase involved in a new mannan catabolic pathway in Bacteroides fragilis. Arch Microbiol. 2014 Jan;196(1):17-23. doi: 10.1007/s00203-013-0938-y. Epub 2013 Nov 12.
2014 Jan degradation 4 2 GH130_1, GH26
PUL0419 microarray pectin Bacteroides ovatus <a href=https://pubmed.ncbi.nlm.nih.gov/22205877/>22205877</a>
Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 2011 Dec;9(12):e1001221. doi: 10.1371/journal.pbio.1001221. Epub 2011 Dec 20.
2011 Dec degradation 11 7 CBM67, GH78, GH130_1, GH140, GH2, GH5_2, GH5_5
PUL0488 growth assay beta-mannan Flavobacterium johnsoniae <a href=https://pubmed.ncbi.nlm.nih.gov/19717629/>19717629</a>
Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl Environ Microbiol. 2009 Nov;75(21):6864-75. doi: 10.1128/AEM.01495-09. Epub 2009 Aug 28.
2009 Nov degradation 14 7 GH130_1, GH26, GH27, GH5_2, GH5_7, GH97
PUL0538 RNA-seq galactomannan Bacteroides cellulosilyticus <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>
Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20.
2013 degradation 15 7 CE7, GH130_1, GH26, GH26, GH26, GH3, GH5_2, GH5_7
PUL0565 microarray, qPCR galactomannan Bacteroides ovatus <a href=https://pubmed.ncbi.nlm.nih.gov/22205877/>22205877</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/27872187/>27872187</a>
Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. Galactomannan Catabolism Conferred by a Polysaccharide Utilization Locus of Bacteroides ovatus: ENZYME SYNERGY AND CRYSTAL STRUCTURE OF A beta-MANNANASE. PLoS Biol. 2011 Dec;9(12):e1001221. doi: 10.1371/journal.pbio.1001221. Epub 2011 Dec 20. J Biol Chem. 2017 Jan 6;292(1):229-243. doi: 10.1074/jbc.M116.746438. Epub 2016 Nov 21.
2011 Dec,2017 Jan 6 degradation 10 4 GH130_1, GH26, GH36
PUL0600 liquid chromatography and mass spectrometry, differential gene expression galactomannan Clostridium cellulovorans <a href=https://pubmed.ncbi.nlm.nih.gov/26020016/>26020016</a>
Elucidation of the recognition mechanisms for hemicellulose and pectin in Clostridium cellulovorans using intracellular quantitative proteome analysis. AMB Express. 2015 May 23;5:29. doi: 10.1186/s13568-015-0115-6. eCollection 2015.
2015 degradation 12 3 GH130_1, GH130_2, GH2
PUL0658 qPCR, growth assay beta-mannooligosaccharide Faecalibacterium prausnitzii SL3/3 <a href=https://pubmed.ncbi.nlm.nih.gov/34061597/>34061597</a>
Human Gut Faecalibacterium prausnitzii Deploys a Highly Efficient Conserved System To Cross-Feed on beta-Mannan-Derived Oligosaccharides. mBio. 2021 Jun 29;12(3):e0362820. doi: 10.1128/mBio.03628-20. Epub 2021 Jun 1.
2021 Jun 29 degradation 14 6 CE17, CBM35inCE17, CBM35inCE17, CE2, GH113, GH130_1, GH130_2, GH36
PUL0662 thin-layer chromatography, liquid chromatography and mass spectrometry, qPCR, clone and expression beta-mannan Phocaeicola dorei DSM 17855 <a href=https://pubmed.ncbi.nlm.nih.gov/34339781/>34339781</a>
BdPUL12 depolymerizes beta-mannan-like glycans into mannooligosaccharides and mannose, which serve as carbon sources for Bacteroides dorei and gut probiotics. Int J Biol Macromol. 2021 Sep 30;187:664-674. doi: 10.1016/j.ijbiomac.2021.07.172. Epub 2021 Jul 31.
2021 Sep 30 degradation 8 4 CE7, GH130_1, GH26, GH5_7
PUL0698 clone and expression, high-performance anion-exchange chromatography, crystallization beta-mannan Muricauda sp. MAR_2010_75 <a href=https://pubmed.ncbi.nlm.nih.gov/36411326/>36411326</a>
Marine bacteroidetes use a conserved enzymatic cascade to digest diatom beta-mannan. ISME J. 2023 Feb;17(2):276-285. doi: 10.1038/s41396-022-01342-4. Epub 2022 Nov 21.
2023 Feb degradation 22 8 CE2, GH130_1, GH26, GH27, GH5_26, GH9
PUL0699 RT-qPCR, high-performance anion-exchange chromatography beta-mannan Roseburia hominis A2-183 <a href=https://pubmed.ncbi.nlm.nih.gov/36557749/>36557749</a>
Cross-Feeding and Enzymatic Catabolism for Mannan-Oligosaccharide Utilization by the Butyrate-Producing Gut Bacterium Roseburia hominis A2-183. Microorganisms. 2022 Dec 16;10(12):2496. doi: 10.3390/microorganisms10122496.
2022 Dec 16 degradation 14 7 CE17, CBM35inCE17, CE2, GH1, GH130_1, GH130_2, GH3, GH36