Browse dbCAN-PUL Entries

PULID Characterization Method(s) Substrate Organism Publication Publish Date Type Num Genes Num CAZymes CazyFamily
PUL0001 RNA-seq, substrate binding assay, enzyme activity assay, mass spectrometry beta-mannan Roseburia intestinalis <a href=https://pubmed.ncbi.nlm.nih.gov/30796211/>30796211</a>
The human gut Firmicute Roseburia intestinalis is a primary degrader of dietary beta-mannans. Nat Commun. 2019 Feb 22;10(1):905. doi: 10.1038/s41467-019-08812-y.
2019 Feb 22 degradation 15 9 CE17, CBM35inCE17, CE2, GH1, GH113, GH130_1, GH130_2, GH36
PUL0004 enzyme activity assay, substrate binding assay beta-glucan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/26827771/>26827771</a>
A novel metagenome-derived gene cluster from termite hindgut: Encoding phosphotransferase system components and high glucose tolerant glucosidase. Enzyme Microb Technol. 2016 Mar;84:24-31. doi: 10.1016/j.enzmictec.2015.12.005. Epub 2015 Dec 15.
2016 Mar degradation 2 1 GH1
PUL0006 enzyme activity assay galactan Geobacillus stearothermophilus <a href=https://pubmed.ncbi.nlm.nih.gov/24637762/>24637762</a>
Purification, crystallization and preliminary crystallographic analysis of Gan1D, a GH1 6-phospho-beta-galactosidase from Geobacillus stearothermophilus T1. Acta Crystallogr F Struct Biol Commun. 2014 Feb;70(Pt 2):225-31. doi: 10.1107/S2053230X13034778. Epub 2014 Jan 21.
2014 Feb degradation 10 1 GH1
PUL0016 microarray cellobiose Lactococcus lactis <a href=https://pubmed.ncbi.nlm.nih.gov/28970222/>28970222</a>
Disruption of a Transcriptional Repressor by an Insertion Sequence Element Integration Leads to Activation of a Novel Silent Cellobiose Transporter in Lactococcus lactis MG1363. Appl Environ Microbiol. 2017 Nov 16;83(23):e01279-17. doi: 10.1128/AEM.01279-17. Print 2017 Dec 1.
2017 Dec 1 degradation 5 1 GH1
PUL0022 RT-PCR, gene deletion mutant and growth assay, enzyme activity assay cellobiose Bacillus coagulans <a href=https://pubmed.ncbi.nlm.nih.gov/30519284/>30519284</a>
Simultaneous consumption of cellobiose and xylose by Bacillus coagulans to circumvent glucose repression and identification of its cellobiose-assimilating operons. Biotechnol Biofuels. 2018 Dec 1;11:320. doi: 10.1186/s13068-018-1323-5. eCollection 2018.
2018 degradation 6 1 GH1
PUL0023 RT-PCR, gene deletion mutant and growth assay, enzyme activity assay cellobiose Bacillus coagulans <a href=https://pubmed.ncbi.nlm.nih.gov/30519284/>30519284</a>
Simultaneous consumption of cellobiose and xylose by Bacillus coagulans to circumvent glucose repression and identification of its cellobiose-assimilating operons. Biotechnol Biofuels. 2018 Dec 1;11:320. doi: 10.1186/s13068-018-1323-5. eCollection 2018.
2018 degradation 5 1 GH1
PUL0028 microarray, qPCR, enzyme activity assay mucin [Ruminococcus] gnavus <a href=https://pubmed.ncbi.nlm.nih.gov/24204617/>24204617</a>
Utilisation of mucin glycans by the human gut symbiont Ruminococcus gnavus is strain-dependent. PLoS One. 2013 Oct 25;8(10):e76341. doi: 10.1371/journal.pone.0076341. eCollection 2013.
2013 degradation 14 4 CBM40, GH33, GH1, GH140, GH177
PUL0041 Southern Blot, enzyme activity assay cellobiose Klebsiella oxytoca <a href=https://pubmed.ncbi.nlm.nih.gov/9023916/>9023916</a>
Cloning of cellobiose phosphoenolpyruvate-dependent phosphotransferase genes: functional expression in recombinant Escherichia coli and identification of a putative binding region for disaccharides. Appl Environ Microbiol. 1997 Feb;63(2):355-63. doi: 10.1128/aem.63.2.355-363.1997.
1997 Feb degradation 3 1 GH1
PUL0107 fosmid library screen, lectin binding assay host glycan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/31275257/>31275257</a>
Investigating Host Microbiota Relationships Through Functional Metagenomics. Front Microbiol. 2019 Jun 7;10:1286. doi: 10.3389/fmicb.2019.01286. eCollection 2019.
2019 degradation 27 1 GH1
PUL0113 sequence homology analysis host glycan Faecalibacterium prausnitzii <a href=https://pubmed.ncbi.nlm.nih.gov/31275257/>31275257</a>
Investigating Host Microbiota Relationships Through Functional Metagenomics. Front Microbiol. 2019 Jun 7;10:1286. doi: 10.3389/fmicb.2019.01286. eCollection 2019.
2019 degradation 23 1 GH1
PUL0144 enzyme activity assay, Western Blot chitin Thermococcus kodakarensis <a href=https://pubmed.ncbi.nlm.nih.gov/16199574/>16199574</a>
Characterization of a novel glucosamine-6-phosphate deaminase from a hyperthermophilic archaeon. J Bacteriol. 2005 Oct;187(20):7038-44. doi: 10.1128/JB.187.20.7038-7044.2005.
2005 Oct degradation 12 4 CE14, GH1, GH18, GH35
PUL0153 RNA-seq human milk oligosaccharide Lactobacillus rhamnosus <a href=https://pubmed.ncbi.nlm.nih.gov/30332787/>30332787</a>
Prebiotics for Lactose Intolerance: Variability in Galacto-Oligosaccharide Utilization by Intestinal Lactobacillus rhamnosus. Nutrients. 2018 Oct 16;10(10):1517. doi: 10.3390/nu10101517.
2018 Oct 16 degradation 3 1 GH1
PUL0154 RNA-seq, differential gene expression human milk oligosaccharide Lactobacillus rhamnosus <a href=https://pubmed.ncbi.nlm.nih.gov/30332787/>30332787</a>
Prebiotics for Lactose Intolerance: Variability in Galacto-Oligosaccharide Utilization by Intestinal Lactobacillus rhamnosus. Nutrients. 2018 Oct 16;10(10):1517. doi: 10.3390/nu10101517.
2018 Oct 16 degradation 3 1 GH1
PUL0157 RNA-seq, differential gene expression human milk oligosaccharide Lactobacillus rhamnosus <a href=https://pubmed.ncbi.nlm.nih.gov/30332787/>30332787</a>
Prebiotics for Lactose Intolerance: Variability in Galacto-Oligosaccharide Utilization by Intestinal Lactobacillus rhamnosus. Nutrients. 2018 Oct 16;10(10):1517. doi: 10.3390/nu10101517.
2018 Oct 16 degradation 4 1 GH1
PUL0158 RNA-seq, differential gene expression human milk oligosaccharide Lactobacillus rhamnosus <a href=https://pubmed.ncbi.nlm.nih.gov/30332787/>30332787</a>
Prebiotics for Lactose Intolerance: Variability in Galacto-Oligosaccharide Utilization by Intestinal Lactobacillus rhamnosus. Nutrients. 2018 Oct 16;10(10):1517. doi: 10.3390/nu10101517.
2018 Oct 16 degradation 4 1 GH1
PUL0186 gene deletion mutant and growth assay cellobiose Streptococcus pneumoniae <a href=https://pubmed.ncbi.nlm.nih.gov/17028271/>17028271</a>
The two-component regulatory system TCS08 is involved in cellobiose metabolism of Streptococcus pneumoniae R6. J Bacteriol. 2007 Feb;189(4):1342-50. doi: 10.1128/JB.01170-06. Epub 2006 Oct 6.
2007 Feb degradation 7 1 GH1
PUL0195 RT-PCR cellobiose Clostridium acetobutylicum <a href=https://pubmed.ncbi.nlm.nih.gov/26691835/>26691835</a>
PTS regulation domain-containing transcriptional activator CelR and sigma factor sigma(54) control cellobiose utilization in Clostridium acetobutylicum. Mol Microbiol. 2016 Apr;100(2):289-302. doi: 10.1111/mmi.13316. Epub 2016 Feb 9.
2016 Apr degradation 5 1 GH1
PUL0231 enzyme activity assay, cosmid library screening beta-glucoside Pectobacterium carotovorum subsp. carotovorum <a href=https://pubmed.ncbi.nlm.nih.gov/22502871/>22502871</a>
Cloning and biochemical analysis of beta-glucoside utilization (bgl) operon without phosphotransferase system in Pectobacterium carotovorum subsp. carotovorum LY34. Microbiol Res. 2012 Sep 6;167(8):461-9. doi: 10.1016/j.micres.2012.03.004. Epub 2012 Apr 12.
2012 Sep 6 degradation 2 1 GH1
PUL0238 Northern Blot glucomannan Bacillus subtilis <a href=https://pubmed.ncbi.nlm.nih.gov/18177310/>18177310</a>
Glucomannan utilization operon of Bacillus subtilis. FEMS Microbiol Lett. 2008 Feb;279(1):103-9. doi: 10.1111/j.1574-6968.2007.01018.x.
2008 Feb degradation 8 2 GH1, GH26
PUL0321 enzyme activity assay, transposon mutagenesis beta-glucoside Escherichia coli <a href=https://pubmed.ncbi.nlm.nih.gov/19233952/>19233952</a>
Characterization of a beta-glucoside operon (bgc) prevalent in septicemic and uropathogenic Escherichia coli strains. Appl Environ Microbiol. 2009 Apr;75(8):2284-93. doi: 10.1128/AEM.02621-08. Epub 2009 Feb 20.
2009 Apr degradation 6 1 GH1
PUL0331 carbon utilization assay cellobiose Aliivibrio fischeri <a href=https://pubmed.ncbi.nlm.nih.gov/18487409/>18487409</a>
Identification of a cellobiose utilization gene cluster with cryptic beta-galactosidase activity in Vibrio fischeri. Appl Environ Microbiol. 2008 Jul;74(13):4059-69. doi: 10.1128/AEM.00190-08. Epub 2008 May 16.
2008 Jul degradation 6 1 GH1
PUL0370 RT-PCR beta-glucoside Corynebacterium glutamicum <a href=https://pubmed.ncbi.nlm.nih.gov/19628558/>19628558</a>
Identification of a second beta-glucoside phosphoenolpyruvate: carbohydrate phosphotransferase system in Corynebacterium glutamicum R. Microbiology (Reading). 2009 Nov;155(Pt 11):3652-3660. doi: 10.1099/mic.0.029496-0. Epub 2009 Jul 23.
2009 Nov degradation 5 1 GH1
PUL0372 enzyme activity assay beta-glucoside Corynebacterium glutamicum <a href=https://pubmed.ncbi.nlm.nih.gov/19628558/>19628558</a>
Identification of a second beta-glucoside phosphoenolpyruvate: carbohydrate phosphotransferase system in Corynebacterium glutamicum R. Microbiology (Reading). 2009 Nov;155(Pt 11):3652-3660. doi: 10.1099/mic.0.029496-0. Epub 2009 Jul 23.
2009 Nov degradation 3 1 GH1
PUL0401 RNA-seq beta-glucan Alteromonas macleodii <a href=https://pubmed.ncbi.nlm.nih.gov/30116038/>30116038</a>
Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides. ISME J. 2019 Jan;13(1):92-103. doi: 10.1038/s41396-018-0252-4. Epub 2018 Aug 16.
2019 Jan degradation 9 3 GH1, GH16_3, GH3
PUL0403 RNA-seq beta-glucan Alteromonas macleodii <a href=https://pubmed.ncbi.nlm.nih.gov/30116038/>30116038</a>
Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides. ISME J. 2019 Jan;13(1):92-103. doi: 10.1038/s41396-018-0252-4. Epub 2018 Aug 16.
2019 Jan degradation 4 1 GH1
PUL0407 primer extension analysis, enzyme activity assay human milk oligosaccharide Lactobacillus casei <a href=https://pubmed.ncbi.nlm.nih.gov/9066115/>9066115</a>
Establishing a model to study the regulation of the lactose operon in Lactobacillus casei. FEMS Microbiol Lett. 1997 Mar 1;148(1):83-9. doi: 10.1111/j.1574-6968.1997.tb10271.x.
1997 Mar 1 degradation 4 1 GH1
PUL0413 enzyme activity assay, reducing-sugar assay cellobiose uncultured bacterium contig00059 <a href=https://pubmed.ncbi.nlm.nih.gov/30116044/>30116044</a>
Functional metagenomics reveals abundant polysaccharide-degrading gene clusters and cellobiose utilization pathways within gut microbiota of a wood-feeding higher termite. ISME J. 2019 Jan;13(1):104-117. doi: 10.1038/s41396-018-0255-1. Epub 2018 Aug 16.
2019 Jan degradation 31 2 GH1, GH44
PUL0414 enzyme activity assay, thin-layer chromatography xylan uncultured bacterium 35A20 <a href=https://pubmed.ncbi.nlm.nih.gov/30116044/>30116044</a>
Functional metagenomics reveals abundant polysaccharide-degrading gene clusters and cellobiose utilization pathways within gut microbiota of a wood-feeding higher termite. ISME J. 2019 Jan;13(1):104-117. doi: 10.1038/s41396-018-0255-1. Epub 2018 Aug 16.
2019 Jan degradation 25 4 GH1, GH10
PUL0423 clone and expression, enzyme activity assay cellobiose Thermotoga neapolitana <a href=https://pubmed.ncbi.nlm.nih.gov/10960102/>10960102</a>
Cloning and characterization of the glucooligosaccharide catabolic pathway beta-glucan glucohydrolase and cellobiose phosphorylase in the marine hyperthermophile Thermotoga neapolitana. J Bacteriol. 2000 Sep;182(18):5172-9. doi: 10.1128/JB.182.18.5172-5179.2000.
2000 Sep degradation 3 2 GH1, GH94
PUL0475 clone and expression, gene deletion mutant and growth assay beta-glucan Streptomyces reticuli <a href=https://pubmed.ncbi.nlm.nih.gov/10347054/>10347054</a>
Characterization of the binding protein-dependent cellobiose and cellotriose transport system of the cellulose degrader Streptomyces reticuli. Appl Environ Microbiol. 1999 Jun;65(6):2636-43. doi: 10.1128/AEM.65.6.2636-2643.1999.
1999 Jun degradation 7 2 CBM2, GH18, GH1
PUL0531 clone and expression, enzyme activity assay chitin Serratia marcescens <a href=https://pubmed.ncbi.nlm.nih.gov/12618440/>12618440</a>
Uptake of N,N'-diacetylchitobiose [(GlcNAc)2] via the phosphotransferase system is essential for chitinase production by Serratia marcescens 2170. J Bacteriol. 2003 Mar;185(6):1776-82. doi: 10.1128/JB.185.6.1776-1782.2003.
2003 Mar degradation 5 1 GH1
PUL0570 clone and expression, enzyme activity assay cellobiose Corynebacterium glutamicum <a href=https://pubmed.ncbi.nlm.nih.gov/12777497/>12777497</a>
A single V317A or V317M substitution in Enzyme II of a newly identified beta-glucoside phosphotransferase and utilization system of Corynebacterium glutamicum R extends its specificity towards cellobiose. Microbiology (Reading). 2003 Jun;149(Pt 6):1569-1580. doi: 10.1099/mic.0.26053-0.
2003 Jun degradation 3 1 GH1
PUL0573 enzyme activity assay, electrophoretic mobility shift assay, RT-PCR, qRT-PCR beta-glucan Streptomyces griseus <a href=https://pubmed.ncbi.nlm.nih.gov/19648249/>19648249</a>
CebR as a master regulator for cellulose/cellooligosaccharide catabolism affects morphological development in Streptomyces griseus. J Bacteriol. 2009 Oct;191(19):5930-40. doi: 10.1128/JB.00703-09. Epub 2009 Jul 31.
2009 Oct degradation 5 1 GH1
PUL0574 enzyme activity assay alpha-mannan Streptococcus pyogenes <a href=https://pubmed.ncbi.nlm.nih.gov/16822234/>16822234</a>
Functional analysis of a group A streptococcal glycoside hydrolase Spy1600 from family 84 reveals it is a beta-N-acetylglucosaminidase and not a hyaluronidase. Biochem J. 2006 Oct 15;399(2):241-7. doi: 10.1042/BJ20060307.
2006 Oct 15 degradation 8 4 GH1, GH125, GH38, GH84
PUL0578 qRT-PCR, enzyme activity assay, electrophoretic mobility shift assay beta-glucan Bifidobacterium breve <a href=https://pubmed.ncbi.nlm.nih.gov/21216899/>21216899</a>
Cellodextrin utilization by bifidobacterium breve UCC2003. Appl Environ Microbiol. 2011 Mar;77(5):1681-90. doi: 10.1128/AEM.01786-10. Epub 2011 Jan 7.
2011 Mar degradation 5 1 GH1
PUL0582 NMR, microarray, enzyme activity assay, gene deletion mutant and growth assay human milk oligosaccharide Lactococcus lactis <a href=https://pubmed.ncbi.nlm.nih.gov/22660716/>22660716</a>
A specific mutation in the promoter region of the silent cel cluster accounts for the appearance of lactose-utilizing Lactococcus lactis MG1363. Appl Environ Microbiol. 2012 Aug;78(16):5612-21. doi: 10.1128/AEM.00455-12. Epub 2012 Jun 1.
2012 Aug degradation 5 2 GH1, GH170
PUL0585 microarray, gene deletion mutant and growth assay, beta-galactosidase assays cellobiose Streptococcus pneumoniae <a href=https://pubmed.ncbi.nlm.nih.gov/21778207/>21778207</a>
CelR-mediated activation of the cellobiose-utilization gene cluster in Streptococcus pneumoniae. Microbiology (Reading). 2011 Oct;157(Pt 10):2854-2861. doi: 10.1099/mic.0.051359-0. Epub 2011 Jul 21.
2011 Oct degradation 7 1 GH1
PUL0603 microarray, qRT-PCR, culureing methods galactomannan Lactobacillus plantarum WCFS1 <a href=https://pubmed.ncbi.nlm.nih.gov/31703861/>31703861</a>
Transcriptional analysis of galactomannooligosaccharides utilization by Lactobacillus plantarum WCFS1. Food Microbiol. 2020 Apr;86:103336. doi: 10.1016/j.fm.2019.103336. Epub 2019 Sep 14.
2020 Apr degradation 3 1 GH1
PUL0699 RT-qPCR, high-performance anion-exchange chromatography beta-mannan Roseburia hominis A2-183 <a href=https://pubmed.ncbi.nlm.nih.gov/36557749/>36557749</a>
Cross-Feeding and Enzymatic Catabolism for Mannan-Oligosaccharide Utilization by the Butyrate-Producing Gut Bacterium Roseburia hominis A2-183. Microorganisms. 2022 Dec 16;10(12):2496. doi: 10.3390/microorganisms10122496.
2022 Dec 16 degradation 14 7 CE17, CBM35inCE17, CE2, GH1, GH130_1, GH130_2, GH3, GH36
PUL0744 RNA-seq, HPLC, gene mutant, differential gene expression lactose Listeria monocytogenes serotype 4b str. F2365 <a href=https://pubmed.ncbi.nlm.nih.gov/38876592/>38876592</a>
Activation of a silent lactose utilization pathway in an evolved Listeria monocytogenes F2365 outbreak isolate. Food Res Int. 2024 Aug;189:114554. doi: 10.1016/j.foodres.2024.114554. Epub 2024 May 27.
2024 Aug degradation 5 1 GH1