Browse dbCAN-PUL Entries

PULID Characterization Method(s) Substrate Organism Publication Publish Date Type Num Genes Num CAZymes CazyFamily
PUL0044 qRT-PCR, enzyme activity assay arabinoxylan Bacteroides ovatus <a href=https://pubmed.ncbi.nlm.nih.gov/26112186/>26112186</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/32266006/>32266006</a>
Glycan complexity dictates microbial resource allocation in the large intestine. Multimodular fused acetyl-feruloyl esterases from soil and gut Bacteroidetes improve xylanase depolymerization of recalcitrant biomass. Nat Commun. 2015 Jun 26;6:7481. doi: 10.1038/ncomms8481. Biotechnol Biofuels. 2020 Mar 31;13:60. doi: 10.1186/s13068-020-01698-9. eCollection 2020.
2015 Jun 26,2020 degradation 34 17 CE20, CE20, CE6, CE1, GH10, GH115, GH3, GH30, GH30_8, GH31_4, GH43_10, CBM91, GH43_12, CBM91, GH43_29, CBM6, GH95, GH97, GH98, CBM35
PUL0045 qRT-PCR arabinoxylan Bacteroides ovatus <a href=https://pubmed.ncbi.nlm.nih.gov/26112186/>26112186</a>
Glycan complexity dictates microbial resource allocation in the large intestine. Nat Commun. 2015 Jun 26;6:7481. doi: 10.1038/ncomms8481.
2015 Jun 26 degradation 11 5 CBM4, GH10, CE20, CE20, GH10, GH43_1, GH67
PUL0049 fosmid library screen beta-glucan feces metagenome <a href=https://pubmed.ncbi.nlm.nih.gov/29601586/>29601586</a>
Two new gene clusters involved in the degradation of plant cell wall from the fecal microbiota of Tunisian dromedary. PLoS One. 2018 Mar 30;13(3):e0194621. doi: 10.1371/journal.pone.0194621. eCollection 2018.
2018 degradation 29 5 CE20, GH16_3, GH26, GH43_17
PUL0056 sequence homology analysis, NMR, size-exclusion chromatography (SEC), clone and expression, recombinant protein expression, enzyme kinetic analysis alginate Bacteroides eggerthii <a href=https://pubmed.ncbi.nlm.nih.gov/29795267/>29795267</a>
Ancient acquisition of "alginate utilization loci" by human gut microbiota. Sci Rep. 2018 May 23;8(1):8075. doi: 10.1038/s41598-018-26104-1.
2018 May 23 degradation 5 3 CE20, PL17_2, PL17, PL6, PL6_1
PUL0091 sequence homology analysis host glycan Phocaeicola vulgatus <a href=https://pubmed.ncbi.nlm.nih.gov/31275257/>31275257</a>
Investigating Host Microbiota Relationships Through Functional Metagenomics. Front Microbiol. 2019 Jun 7;10:1286. doi: 10.3389/fmicb.2019.01286. eCollection 2019.
2019 degradation 8 7 CE3, CE20, CE9, GH2, GH20, GH20, CBM32, GH92
PUL0092 sequence homology analysis host glycan Phocaeicola vulgatus <a href=https://pubmed.ncbi.nlm.nih.gov/31275257/>31275257</a>
Investigating Host Microbiota Relationships Through Functional Metagenomics. Front Microbiol. 2019 Jun 7;10:1286. doi: 10.3389/fmicb.2019.01286. eCollection 2019.
2019 degradation 10 5 CBM93, GH33, CE3, CE20, GH2, GH20, GH20, CBM32
PUL0093 fosmid library screen, lectin binding assay host glycan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/31275257/>31275257</a>
Investigating Host Microbiota Relationships Through Functional Metagenomics. Front Microbiol. 2019 Jun 7;10:1286. doi: 10.3389/fmicb.2019.01286. eCollection 2019.
2019 degradation 24 7 CE20, CE9, GH2, GH20, GH92
PUL0094 fosmid library screen, lectin binding assay host glycan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/31275257/>31275257</a>
Investigating Host Microbiota Relationships Through Functional Metagenomics. Front Microbiol. 2019 Jun 7;10:1286. doi: 10.3389/fmicb.2019.01286. eCollection 2019.
2019 degradation 25 7 CBM93, GH33, CE3, CE20, GH171, GH2, GH20, GH27
PUL0095 fosmid library screen, lectin binding assay host glycan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/31275257/>31275257</a>
Investigating Host Microbiota Relationships Through Functional Metagenomics. Front Microbiol. 2019 Jun 7;10:1286. doi: 10.3389/fmicb.2019.01286. eCollection 2019.
2019 degradation 17 6 CBM93, GH33, CE3, CE20, GH2, GH20, GH27
PUL0096 fosmid library screen, lectin binding assay host glycan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/31275257/>31275257</a>
Investigating Host Microbiota Relationships Through Functional Metagenomics. Front Microbiol. 2019 Jun 7;10:1286. doi: 10.3389/fmicb.2019.01286. eCollection 2019.
2019 degradation 22 12 CBM93, GH33, CE3, CE3, CE20, CE9, GH2, GH20, GH29, GH92, GH97
PUL0097 sequence homology analysis host glycan Bacteroides massiliensis <a href=https://pubmed.ncbi.nlm.nih.gov/31275257/>31275257</a>
Investigating Host Microbiota Relationships Through Functional Metagenomics. Front Microbiol. 2019 Jun 7;10:1286. doi: 10.3389/fmicb.2019.01286. eCollection 2019.
2019 degradation 15 10 CBM93, GH33, CE3, CE3, CE20, CE9, GH2, GH20, GH92
PUL0102 fosmid library screen, lectin binding assay host glycan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/31275257/>31275257</a>
Investigating Host Microbiota Relationships Through Functional Metagenomics. Front Microbiol. 2019 Jun 7;10:1286. doi: 10.3389/fmicb.2019.01286. eCollection 2019.
2019 degradation 25 6 CBM67, GH78, CBM93, GH33, CE20, CE3, GH20, GH29
PUL0115 expression of recombinant proteins, RNA-seq, differential gene expression host glycan Bacteroides thetaiotaomicron <a href=https://pubmed.ncbi.nlm.nih.gov/31160824/>31160824</a>
Complex N-glycan breakdown by gut Bacteroides involves an extensive enzymatic apparatus encoded by multiple co-regulated genetic loci. Nat Microbiol. 2019 Sep;4(9):1571-1581. doi: 10.1038/s41564-019-0466-x. Epub 2019 Jun 3.
2019 Sep degradation 7 7 CBM93, GH33, CE3, CE20, GH2, GH20, GH20, CBM32
PUL0140 sequence homology analysis xylan Bifidobacterium animalis subsp. animalis <a href=https://pubmed.ncbi.nlm.nih.gov/30306201/>30306201</a>
Staying alive: growth and survival of Bifidobacterium animalis subsp. animalis under in vitro and in vivo conditions. Appl Microbiol Biotechnol. 2018 Dec;102(24):10645-10663. doi: 10.1007/s00253-018-9413-7. Epub 2018 Oct 10.
2018 Dec degradation 11 4 CE20, CE20, GH43_10, CBM91, GH43_11, CBM91, GH43_12
PUL0164 mass spectrometry, sequence homology analysis, differential gene expression beta-mannan Leeuwenhoekiella sp. MAR_2009_132 <a href=https://pubmed.ncbi.nlm.nih.gov/30246424/>30246424</a>
Alpha- and beta-mannan utilization by marine Bacteroidetes. Environ Microbiol. 2018 Nov;20(11):4127-4140. doi: 10.1111/1462-2920.14414. Epub 2018 Oct 16.
2018 Nov degradation 19 12 CBM8, CE2, CE20, GH130_1, GH26, GH27, GH3, GH5_2, GH5_7, GH9
PUL0165 mass spectrometry, sequence homology analysis, differential gene expression beta-mannan Salegentibacter sp. Hel_I_6 <a href=https://pubmed.ncbi.nlm.nih.gov/30246424/>30246424</a>
Alpha- and beta-mannan utilization by marine Bacteroidetes. Environ Microbiol. 2018 Nov;20(11):4127-4140. doi: 10.1111/1462-2920.14414. Epub 2018 Oct 16.
2018 Nov degradation 16 8 CE20, GH130_1, GH26, GH27, GH30, GH5_2, GH9
PUL0193 RNA-seq, RT-PCR, qPCR pectin Bacteroides xylanisolvens <a href=https://pubmed.ncbi.nlm.nih.gov/26920945/>26920945</a>
Unraveling the pectinolytic function of Bacteroides xylanisolvens using a RNA-seq approach and mutagenesis. BMC Genomics. 2016 Feb 27;17:147. doi: 10.1186/s12864-016-2472-1.
2016 Feb 27 degradation 30 8 CE20, GH105, GH117, GH117, GH2, GH28, PL11
PUL0239 fosmid library screen, sequence homology analysis cellulose Prevotella sp. Sc00026 <a href=https://pubmed.ncbi.nlm.nih.gov/24448980/>24448980</a>
Analysis of the bovine rumen microbiome reveals a diversity of Sus-like polysaccharide utilization loci from the bacterial phylum Bacteroidetes. J Ind Microbiol Biotechnol. 2014 Mar;41(3):601-6. doi: 10.1007/s10295-013-1395-y. Epub 2014 Jan 22.
2014 Mar degradation 16 9 CE20, CE7, GH130_1, GH26, GH26, GH5_4, GH3, GH36, GH5_7
PUL0244 gene deletion mutant and growth assay, complementation study, carbohydrate binding assay host glycan Tannerella forsythia <a href=https://pubmed.ncbi.nlm.nih.gov/24351045/>24351045</a>
Structural and functional characterization of NanU, a novel high-affinity sialic acid-inducible binding protein of oral and gut-dwelling Bacteroidetes species. Biochem J. 2014 Mar 15;458(3):499-511. doi: 10.1042/BJ20131415.
2014 Mar 15 degradation 9 3 CBM93, GH33, CE20, GH20
PUL0274 RT-qPCR xylan Bifidobacterium animalis subsp. lactis <a href=https://pubmed.ncbi.nlm.nih.gov/23663691/>23663691</a>
Transcriptional analysis of oligosaccharide utilization by Bifidobacterium lactis Bl-04. BMC Genomics. 2013 May 10;14:312. doi: 10.1186/1471-2164-14-312.
2013 May 10 degradation 12 4 CE20, CE20, GH43_10, CBM91, GH43_11, CBM91, GH43_12
PUL0329 microarray, gas chromatography, mass spectrometry xylan Gramella flava <a href=https://pubmed.ncbi.nlm.nih.gov/28261179/>28261179</a>
Characterization of Potential Polysaccharide Utilization Systems in the Marine Bacteroidetes Gramella Flava JLT2011 Using a Multi-Omics Approach. Front Microbiol. 2017 Feb 14;8:220. doi: 10.3389/fmicb.2017.00220. eCollection 2017.
2017 degradation 25 9 CE15, CE20, CE20, GH10, GH115, GH3, GH43_1, GH43_10, CBM91, GH43_12, CBM91, GH67
PUL0334 fosmid library screen, enzyme activity assay, thin-layer chromatography beta-glucan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/28091525/>28091525</a>
A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic. Sci Rep. 2017 Jan 16;7:40248. doi: 10.1038/srep40248.
2017 Jan 16 degradation 23 7 CE20, CE4, GH30, GH31_3, GH9
PUL0345 qRT-PCR, enzyme activity assay xylan Bacteroides intestinalis <a href=https://pubmed.ncbi.nlm.nih.gov/27681607/>27681607</a>
Bacteroides intestinalis DSM 17393, a member of the human colonic microbiome, upregulates multiple endoxylanases during growth on xylan. Sci Rep. 2016 Sep 29;6:34360. doi: 10.1038/srep34360.
2016 Sep 29 degradation 31 13 CE1, CE20, CE20, CE6, GH95, GH10, GH10, GH43_12, CBM91, GH115, GH35, GH43_1, GH5_21, GH67, GH8
PUL0348 enzyme activity assay host glycan Bacteroides fragilis <a href=https://pubmed.ncbi.nlm.nih.gov/22449996/>22449996</a>
Characterization of a gene cluster for sialoglycoconjugate utilization in Bacteroides fragilis. J Med Invest. 2012;59(1-2):79-94. doi: 10.2152/jmi.59.79.
2012 degradation 13 9 CBM93, GH33, CE3, CE20, GH2, GH20, GH20, CBM32, GH92
PUL0392 RT-PCR, qPCR xylan Bacteroides xylanisolvens <a href=https://pubmed.ncbi.nlm.nih.gov/27142817/>27142817</a>
Xylan degradation by the human gut Bacteroides xylanisolvens XB1A(T) involves two distinct gene clusters that are linked at the transcriptional level. BMC Genomics. 2016 May 4;17:326. doi: 10.1186/s12864-016-2680-8.
2016 May 4 degradation 8 3 CE20, CE20, GH13_14, GH67
PUL0416 microarray pectin Bacteroides ovatus <a href=https://pubmed.ncbi.nlm.nih.gov/22205877/>22205877</a>
Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 2011 Dec;9(12):e1001221. doi: 10.1371/journal.pbio.1001221. Epub 2011 Dec 20.
2011 Dec degradation 12 1 CE20
PUL0417 microarray pectin Bacteroides ovatus <a href=https://pubmed.ncbi.nlm.nih.gov/22205877/>22205877</a>
Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 2011 Dec;9(12):e1001221. doi: 10.1371/journal.pbio.1001221. Epub 2011 Dec 20.
2011 Dec degradation 13 1 CE20
PUL0464 microarray, qPCR host glycan Bacteroides thetaiotaomicron <a href=https://pubmed.ncbi.nlm.nih.gov/18996345/>18996345</a>
Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe. 2008 Nov 13;4(5):447-57. doi: 10.1016/j.chom.2008.09.007.
2008 Nov 13 degradation 16 8 CBM93, GH33, CE20, GH2, GH20, GH20, CBM32
PUL0472 microarray, qPCR mucin Bacteroides thetaiotaomicron <a href=https://pubmed.ncbi.nlm.nih.gov/18996345/>18996345</a>
Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe. 2008 Nov 13;4(5):447-57. doi: 10.1016/j.chom.2008.09.007.
2008 Nov 13 degradation 28 10 CBM67, GH78, CE1, CE20, CE20, GH130_3, GH2, GH38, GH43_8, GH92
PUL0482 growth assay pectin Flavobacterium johnsoniae <a href=https://pubmed.ncbi.nlm.nih.gov/19717629/>19717629</a>
Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl Environ Microbiol. 2009 Nov;75(21):6864-75. doi: 10.1128/AEM.01495-09. Epub 2009 Aug 28.
2009 Nov degradation 27 21 CBM67, GH78, CE19, CE20, CE8, GH106, GH127, GH137, GH139, GH140, GH142, GH143, GH2, GH28, GH43_18, GH78, GH95, PL1_2, PL29
PUL0483 growth assay pectin Flavobacterium johnsoniae <a href=https://pubmed.ncbi.nlm.nih.gov/19717629/>19717629</a>
Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl Environ Microbiol. 2009 Nov;75(21):6864-75. doi: 10.1128/AEM.01495-09. Epub 2009 Aug 28.
2009 Nov degradation 12 7 CE12, CE12, CE20, GH105, GH106, GH117, GH2, GH28
PUL0539 RNA-seq pectin Bacteroides cellulosilyticus <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>
Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20.
2013 degradation 16 7 CE20, GH105, GH105, GH106, GH28, PL11, PL1_2
PUL0558 gene deletion mutant and growth assay, growth assay, enzyme activity assay pectin Bacteroides thetaiotaomicron <a href=https://pubmed.ncbi.nlm.nih.gov/28329766/>28329766</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/22205877/>22205877</a>
Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. Nature. 2017 Apr 6;544(7648):65-70. doi: 10.1038/nature21725. Epub 2017 Mar 22. PLoS Biol. 2011 Dec;9(12):e1001221. doi: 10.1371/journal.pbio.1001221. Epub 2011 Dec 20.
2017 Apr 6,2011 Dec degradation 50 21 CBM67, GH78, CBM67, GH78, GH33, CE19, CE20, GH105, GH106, GH127, GH137, GH2, CBM57, CBM97, GH138, GH139, GH140, GH141, GH143, GH142, GH2, GH28, GH43_18, GH78, GH95, PL1_2
PUL0630 enzyme activity assay, affinity gel electrophoresis xylan termite gut metagenome <a href=https://pubmed.ncbi.nlm.nih.gov/33187992/>33187992</a>
Multimodularity of a GH10 Xylanase Found in the Termite Gut Metagenome. Appl Environ Microbiol. 2021 Jan 15;87(3):e01714-20. doi: 10.1128/AEM.01714-20. Print 2021 Jan 15.
2021 Jan 15 degradation 9 5 CE20, CE20, GH11, GH10, GH115, GH43_1
PUL0648 high-performance anion-exchange chromatography, substrate binding assay, thin-layer chromatography, NMR, mass spectrometry, crystallization xylan Dysgonomonas mossii DSM 22836 <a href=https://pubmed.ncbi.nlm.nih.gov/33667545/>33667545</a>
A polysaccharide utilization locus from the gut bacterium Dysgonomonas mossii encodes functionally distinct carbohydrate esterases. J Biol Chem. 2021 Jan-Jun;296:100500. doi: 10.1016/j.jbc.2021.100500. Epub 2021 Mar 2.
2021 Jan-Jun degradation 37 21 CE1, CE1, CE1, CE20, CE20, CE6, GH10, GH115, GH146, GH31_4, GH43_1, GH43_10, CBM91, GH43_12, CBM91, GH43_29, GH43_29, CBM6, GH51_2, GH67, GH8, GH97
PUL0669 clone, high-performance anion-exchange chromatography, enzymatic product analysis xylan Bacteroides eggerthii 1_2_48FAA <a href=https://pubmed.ncbi.nlm.nih.gov/34480044/>34480044</a>
Characterization of a novel multidomain CE15-GH8 enzyme encoded by a polysaccharide utilization locus in the human gut bacterium Bacteroides eggerthii. Sci Rep. 2021 Sep 3;11(1):17662. doi: 10.1038/s41598-021-96659-z.
2021 Sep 3 degradation 26 15 CE1, CE15, GH8, CE20, CE20, CE6, GH10, GH115, GH31_4, GH35, GH43_1, GH43_10, CBM91, GH43_12, CBM91, GH5_21, GH67, GH95, GH97
PUL0680 gene deletion mutant and growth assay, clone and expression, qRT-PCR, high-performance anion-exchange chromatography, crystallization, recombinant protein expression xyloglucan Bacteroides uniformis ATCC 8492 <a href=https://pubmed.ncbi.nlm.nih.gov/34995484/>34995484</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/34731054/>34731054</a>
Polysaccharide utilization loci in Bacteroides determine population fitness and community-level interactions. Cell Surface Xyloglucan Recognition and Hydrolysis by the Human Gut Commensal Bacteroides uniformis. Cell Host Microbe. 2022 Feb 9;30(2):200-215.e12. doi: 10.1016/j.chom.2021.12.006. Epub 2022 Jan 6. Appl Environ Microbiol. 2022 Jan 11;88(1):e0156621. doi: 10.1128/AEM.01566-21. Epub 2021 Nov 3.
2022 Feb 9,2022 Jan 11 degradation 15 10 CE20, GH43_16, CBM6, GH2, GH29, GH2, GH2, GH31_4, GH42, GH43_33, GH5_4, GH97
PUL0697 recombinant protein expression, SDS-PAGE, HPLC xylan Caldicellulosiruptor bescii DSM 6725 <a href=https://pubmed.ncbi.nlm.nih.gov/36218355/>36218355</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/34060910/>34060910</a>
Biochemical and Regulatory Analyses of Xylanolytic Regulons in Caldicellulosiruptor bescii Reveal Genus-Wide Features of Hemicellulose Utilization. Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile Caldicellulosiruptor bescii. Appl Environ Microbiol. 2022 Nov 8;88(21):e0130222. doi: 10.1128/aem.01302-22. Epub 2022 Oct 11. mSystems. 2021 Jun 29;6(3):e0134520. doi: 10.1128/mSystems.01345-20. Epub 2021 Jun 1.
2022 Nov 8,2021 Jun 29 degradation 3 3 CE20, CE20, CE4, GH10
PUL0701 qRT-PCR, enzyme activity assay xyloglucan Xanthomonas citri pv. citri str. 306 <a href=https://pubmed.ncbi.nlm.nih.gov/25595763/>25595763</a>
Xylan utilization regulon in Xanthomonas citri pv. citri Strain 306: gene expression and utilization of oligoxylosides. Appl Environ Microbiol. 2015 Mar;81(6):2163-72. doi: 10.1128/AEM.03091-14. Epub 2015 Jan 16.
2015 Mar degradation 31 8 CE20, CE20, GH10, GH2, GH3, GH43_1, GH43_12, CBM91, GH67
PUL0702 enzyme activity assay, gene deletion mutant and growth assay xyloglucan Xanthomonas citri pv. citri str. 306 <a href=https://pubmed.ncbi.nlm.nih.gov/34193873/>34193873</a>
Xyloglucan processing machinery in Xanthomonas pathogens and its role in the transcriptional activation of virulence factors. Nat Commun. 2021 Jun 30;12(1):4049. doi: 10.1038/s41467-021-24277-4.
2021 Jun 30 degradation 8 5 CE20, CE20, GH31_4, GH35, GH74, GH95
PUL0704 fluorophore-assisted carbohydrate electrophoresis (FACE), dinitrosalicylic acid-assay (DNS-assay), HPLC, clone and expression xylan Flavimarina sp. Hel_I_48 <a href=https://pubmed.ncbi.nlm.nih.gov/37121608/>37121608</a>
Marine Bacteroidetes enzymatically digest xylans from terrestrial plants. Environ Microbiol. 2023 Sep;25(9):1713-1727. doi: 10.1111/1462-2920.16390. Epub 2023 Apr 30.
2023 Sep degradation 18 7 CE15, CBM9, CE20, CE20, GH10, GH115, GH115, GH43_1, GH67
PUL0706 RNA-seq, growth assay agar Pseudoalteromonas atlantica T6c <a href=https://pubmed.ncbi.nlm.nih.gov/37265394/>37265394</a>
Constructing Marine Bacterial Metabolic Chassis for Potential Biorefinery of Red Algal Biomass and Agaropectin Wastes. ACS Synth Biol. 2023 Jun 16;12(6):1782-1793. doi: 10.1021/acssynbio.3c00063. Epub 2023 Jun 2.
2023 Jun 16 degradation 43 15 CE20, CE20, GH117, GH117, GH140, GH16_12, GH16_14, GH2, GH29, GH3, GH43_12, CBM91, GH43_2, CBM6, GH86
PUL0717 gene mutant, mice colonization with mutant raffinose family oligosaccharides Bacteroides thetaiotaomicron VPI-5482 <a href=https://pubmed.ncbi.nlm.nih.gov/37598339/>37598339</a>
Dynamic genetic adaptation of Bacteroides thetaiotaomicron during murine gut colonization. Cell Rep. 2023 Aug 29;42(8):113009. doi: 10.1016/j.celrep.2023.113009. Epub 2023 Aug 21.
2023 Aug 29 degradation 5 4 CE20, CE20, GH27, GH36, GH92
PUL0721 RNA-seq, RT-qPCR, gene deletion mutant and growth assay human milk oligosaccharide Phocaeicola dorei strain DSM 17855 <a href=https://pubmed.ncbi.nlm.nih.gov/38167825/>38167825</a>
CRISPR-Cas-based identification of a sialylated human milk oligosaccharides utilization cluster in the infant gut commensal Bacteroides dorei. Nat Commun. 2024 Jan 2;15(1):105. doi: 10.1038/s41467-023-44437-y.
2024 Jan 2 degradation 13 9 CBM93, GH33, CE3, CE20, CE9, GH2, GH20, GH92
PUL0736 RNA-seq, RT-qPCR, enzyme activity assay, thin-layer chromatography, Western Blot, recombinant protein expression, DSS-induced mouse colitis model alginate Bacteroides clarus YIT 12056 <a href=https://pubmed.ncbi.nlm.nih.gov/38563787/>38563787</a>
Alginate oligosaccharide assimilation by gut microorganisms and the potential role in gut inflammation alleviation. Appl Environ Microbiol. 2024 May 21;90(5):e0004624. doi: 10.1128/aem.00046-24. Epub 2024 Apr 2.
2024 May 21 degradation 10 3 CE20, PL17_2, PL17, PL6, PL6_1
PUL0737 mass spectrometry, SDS-PAGE, growth assay arabinogalactan Maribacter sp. MAR_2009_72 <a href=https://pubmed.ncbi.nlm.nih.gov/38569650/>38569650</a>
Proteomic insight into arabinogalactan utilization by particle-associated Maribacter sp. MAR_2009_72. FEMS Microbiol Ecol. 2024 Apr 10;100(5):fiae045. doi: 10.1093/femsec/fiae045.
2024 Apr 10 degradation 16 4 CE20, CE20, GH10, GH43_1, GH67
PUL0743 gene mutant, SDS-PAGE, Western Blot, recombinant protein expression, thermal shift assay (TSA), isothermal titration calorimetry (ITC), HPAEC-PAD, RT-qPCR, fluorescence measurements xylan Ruminiclostridium cellulolyticum H10 <a href=https://pubmed.ncbi.nlm.nih.gov/36403068/>36403068</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/38789996/>38789996</a>
Selfish uptake versus extracellular arabinoxylan degradation in the primary degrader Ruminiclostridium cellulolyticum, a new string to its bow. Intracellular removal of acetyl, feruloyl and p-coumaroyl decorations on arabinoxylo-oligosaccharides imported from lignocellulosic biomass degradation by Ruminiclostridium cellulolyticum. Biotechnol Biofuels Bioprod. 2022 Nov 19;15(1):127. doi: 10.1186/s13068-022-02225-8. Microb Cell Fact. 2024 May 24;23(1):151. doi: 10.1186/s12934-024-02423-z.
2022 Nov 19,2024 May 24 degradation 13 6 CE1, CE20, CE20, GH39, GH43_10, CBM91, GH51_1, GH8
PUL0776 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Rhodopirellula sp. SWK7 <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 32 10 CE19, CBM51, CE20, GH115, GH116, GH117, GH117, GH29, GH95
PUL0785 RNA-seq, differential gene expression, HPAEC-PAD, SDS-PAGE, para-hydroxybenzoic acid (PAHBAH) assay, reducing-sugar assay, Carbohydrate Polyacrylamide Gel Electrophoresis (C-PAGE), enzyme activity assay fucoidan Neorhodopirellula lusitana <a href=https://pubmed.ncbi.nlm.nih.gov/39738071/>39738071</a>
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
2024 Dec 30 degradation 22 5 CE20, CE20, GH95, CE7, GH117, GH168
PUL0788 RNA-seq, reducing-sugar assay, growth assay pectic polysaccharide Bacteroides ovatus strain ATCC 8483 <a href=https://pubmed.ncbi.nlm.nih.gov/39892338/>39892338</a>
In vitro fermentation of a purified fraction of polysaccharides from the root of Brassica rapa L. by human gut microbiota and its interaction with Bacteroides ovatus. Food Chem. 2025 May 1;473:143109. doi: 10.1016/j.foodchem.2025.143109. Epub 2025 Jan 27.
2025 May 1 degradation 26 8 CE20, GH105, GH2, GH28, PL11, PL1_2, PL9_1
PUL0791 RNA-seq, reducing-sugar assay, growth assay pectic polysaccharide Bacteroides ovatus strain ATCC 8483 <a href=https://pubmed.ncbi.nlm.nih.gov/39892338/>39892338</a>
In vitro fermentation of a purified fraction of polysaccharides from the root of Brassica rapa L. by human gut microbiota and its interaction with Bacteroides ovatus. Food Chem. 2025 May 1;473:143109. doi: 10.1016/j.foodchem.2025.143109. Epub 2025 Jan 27.
2025 May 1 degradation 6 5 CE20, GH106, GH139, GH2, PL1_2
PUL0792 enzyme activity assay, recombinant protein expression, RNA-seq xylan Bifidobacterium pseudocatenulatum strain YIT11952 <a href=https://pubmed.ncbi.nlm.nih.gov/37938239/>37938239</a>
Xylan utilisation promotes adaptation of Bifidobacterium pseudocatenulatum to the human gastrointestinal tract. ISME Commun. 2021 Oct 28;1(1):62. doi: 10.1038/s43705-021-00066-4.
2021 Oct 28 degradation 15 5 CE20, GH10, CBM9, GH120, GH43_11, CBM91, GH8
PUL0795 RNA-seq, recombinant protein expression, growth assay xyloglucan Flavobacterium johnsoniae UW101 <a href=https://pubmed.ncbi.nlm.nih.gov/39913342/>39913342</a>
Metabolism of hemicelluloses by root-associated Bacteroidota species. ISME J. 2025 Jan 2;19(1):wraf022. doi: 10.1093/ismejo/wraf022.
2025 Jan 2 degradation 12 8 CE20, CE20, GH2, GH3, GH31_3, GH39, GH5_4, GH95, GH97