Browse dbCAN-PUL Entries

PULID Characterization Method(s) Substrate Organism Publication Publish Date Type Num Genes Num CAZymes CazyFamily
PUL0010 enzyme activity assay, liquid chromatography and mass spectrometry xylan Geobacillus thermodenitrificans <a href=https://pubmed.ncbi.nlm.nih.gov/28616644/>28616644</a>
Synergistic hydrolysis of xylan using novel xylanases, beta-xylosidases, and an alpha-L-arabinofuranosidase from Geobacillus thermodenitrificans NG80-2. Appl Microbiol Biotechnol. 2017 Aug;101(15):6023-6037. doi: 10.1007/s00253-017-8341-2. Epub 2017 Jun 14.
2017 Aug degradation 42 8 CE4, GH10, GH39, GH43_11, CBM91, GH51_1, GH52, GH67
PUL0044 qRT-PCR, enzyme activity assay arabinoxylan Bacteroides ovatus <a href=https://pubmed.ncbi.nlm.nih.gov/26112186/>26112186</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/32266006/>32266006</a>
Glycan complexity dictates microbial resource allocation in the large intestine. Multimodular fused acetyl-feruloyl esterases from soil and gut Bacteroidetes improve xylanase depolymerization of recalcitrant biomass. Nat Commun. 2015 Jun 26;6:7481. doi: 10.1038/ncomms8481. Biotechnol Biofuels. 2020 Mar 31;13:60. doi: 10.1186/s13068-020-01698-9. eCollection 2020.
2015 Jun 26,2020 degradation 34 17 CE20, CE20, CE6, CE1, GH10, GH115, GH3, GH30, GH30_8, GH31_4, GH43_10, CBM91, GH43_12, CBM91, GH43_29, CBM6, GH95, GH97, GH98, CBM35
PUL0063 bicinchoninic acid (BCA) reducing-sugar assay, enzyme product analysis, affinity gel electrophoresis, isothermal titration calorimetry (ITC) xyloglucan Bacteroides ovatus <a href=https://pubmed.ncbi.nlm.nih.gov/31420336/>31420336</a>
Adaptation of Syntenic Xyloglucan Utilization Loci of Human Gut Bacteroidetes to Polysaccharide Side Chain Diversity. Appl Environ Microbiol. 2019 Oct 1;85(20):e01491-19. doi: 10.1128/AEM.01491-19. Print 2019 Oct 15.
2019 Oct 15 degradation 16 8 GH2, GH3, GH31_4, GH43_12, CBM91, GH5_4, GH9
PUL0065 bicinchoninic acid (BCA) reducing-sugar assay, enzyme product analysis, affinity gel electrophoresis, isothermal titration calorimetry (ITC) xyloglucan Bacteroides uniformis <a href=https://pubmed.ncbi.nlm.nih.gov/31420336/>31420336</a>
Adaptation of Syntenic Xyloglucan Utilization Loci of Human Gut Bacteroidetes to Polysaccharide Side Chain Diversity. Appl Environ Microbiol. 2019 Oct 1;85(20):e01491-19. doi: 10.1128/AEM.01491-19. Print 2019 Oct 15.
2019 Oct 15 degradation 13 6 GH2, GH3, GH31_4, GH43_12, CBM91, GH5_4, GH95
PUL0066 bicinchoninic acid (BCA) reducing-sugar assay, enzyme product analysis, affinity gel electrophoresis, isothermal titration calorimetry (ITC) xyloglucan Bacteroides fluxus <a href=https://pubmed.ncbi.nlm.nih.gov/31420336/>31420336</a>
Adaptation of Syntenic Xyloglucan Utilization Loci of Human Gut Bacteroidetes to Polysaccharide Side Chain Diversity. Appl Environ Microbiol. 2019 Oct 1;85(20):e01491-19. doi: 10.1128/AEM.01491-19. Print 2019 Oct 15.
2019 Oct 15 degradation 13 6 GH2, GH3, GH31_4, GH43_12, CBM91, GH5_4, GH95
PUL0067 bicinchoninic acid (BCA) reducing-sugar assay, enzyme product analysis, affinity gel electrophoresis, isothermal titration calorimetry (ITC) xyloglucan Dysgonomonas gadei <a href=https://pubmed.ncbi.nlm.nih.gov/31420336/>31420336</a>
Adaptation of Syntenic Xyloglucan Utilization Loci of Human Gut Bacteroidetes to Polysaccharide Side Chain Diversity. Appl Environ Microbiol. 2019 Oct 1;85(20):e01491-19. doi: 10.1128/AEM.01491-19. Print 2019 Oct 15.
2019 Oct 15 degradation 11 6 GH2, GH3, GH31_4, GH43_12, CBM91, GH5_4, GH95
PUL0084 label-free quantitative proteomics, functional enrichment analysis, enzyme activity assay cellulose Ruminiclostridium papyrosolvens <a href=https://pubmed.ncbi.nlm.nih.gov/31338125/>31338125</a>
Secretomic analyses of Ruminiclostridium papyrosolvens reveal its enzymatic basis for lignocellulose degradation. Biotechnol Biofuels. 2019 Jul 15;12:183. doi: 10.1186/s13068-019-1522-8. eCollection 2019.
2019 degradation 12 12 CE1, CBM6, GH10, CBM6, GH27, CBM6, GH30_8, CBM6, GH43_10, CBM91, CBM6, GH43_29, CBM6, GH59, CBM6, GH62, CBM6, GH62, CBM6, CE6, GH95, CBM32
PUL0114 recombinant protein expression, enzyme activity assay arabinan Ruminiclostridium cellulolyticum <a href=https://pubmed.ncbi.nlm.nih.gov/31198441/>31198441</a>
The xyl-doc gene cluster of Ruminiclostridium cellulolyticum encodes GH43- and GH62-alpha-l-arabinofuranosidases with complementary modes of action. Biotechnol Biofuels. 2019 Jun 10;12:144. doi: 10.1186/s13068-019-1483-y. eCollection 2019.
2019 degradation 14 14 CE1, CBM6, GH10, CBM6, GH146, CBM22, GH27, CBM6, GH2, CBM6, GH30_8, CBM6, GH43_10, CBM91, CBM6, GH43_16, CBM6, GH43_29, CBM6, GH59, CBM6, GH62, CBM6, GH62, CBM6, CE6, GH95, CBM32, CBM6
PUL0135 enzyme activity assay, carbohydrate binding assay pectin Pseudoalteromonas sp. <a href=https://pubmed.ncbi.nlm.nih.gov/30341080/>30341080</a>
Biochemical Reconstruction of a Metabolic Pathway from a Marine Bacterium Reveals Its Mechanism of Pectin Depolymerization. Appl Environ Microbiol. 2018 Dec 13;85(1):e02114-18. doi: 10.1128/AEM.02114-18. Print 2019 Jan 1.
2019 Jan 1 degradation 21 7 CE12, CE8, GH105, GH28, GH43_10, CBM91, PL1_2
PUL0140 sequence homology analysis xylan Bifidobacterium animalis subsp. animalis <a href=https://pubmed.ncbi.nlm.nih.gov/30306201/>30306201</a>
Staying alive: growth and survival of Bifidobacterium animalis subsp. animalis under in vitro and in vivo conditions. Appl Microbiol Biotechnol. 2018 Dec;102(24):10645-10663. doi: 10.1007/s00253-018-9413-7. Epub 2018 Oct 10.
2018 Dec degradation 11 4 CE20, CE20, GH43_10, CBM91, GH43_11, CBM91, GH43_12
PUL0224 RT-PCR, qRT-PCR, ion trap liquid chromatography, mass spectrometry, target decoy database analysis, high-performance anion-exchange chromatography cellulose Ruminiclostridium cellulolyticum <a href=https://pubmed.ncbi.nlm.nih.gov/23418511/>23418511</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/20013800/>20013800</a>
A two-component system (XydS/R) controls the expression of genes encoding CBM6-containing proteins in response to straw in Clostridium cellulolyticum. Modulation of cellulosome composition in Clostridium cellulolyticum: adaptation to the polysaccharide environment revealed by proteomic and carbohydrate-active enzyme analyses. PLoS One. 2013;8(2):e56063. doi: 10.1371/journal.pone.0056063. Epub 2013 Feb 13. Proteomics. 2010 Feb;10(3):541-54. doi: 10.1002/pmic.200900311.
2013,2010 Feb degradation 16 14 CE1, CBM6, GH10, CBM6, GH146, CBM22, GH27, CBM6, GH2, CBM6, GH30_8, CBM6, GH43_10, CBM91, CBM6, GH43_16, CBM6, GH43_29, CBM6, GH59, CBM6, GH62, CBM6, GH62, CBM6, CE6, GH95, CBM32, CBM6
PUL0229 RT-PCR xylan Paenibacillus sp. JDR-2 <a href=https://pubmed.ncbi.nlm.nih.gov/17921311/>17921311</a>
Structure, function, and regulation of the aldouronate utilization gene cluster from Paenibacillus sp. strain JDR-2. J Bacteriol. 2007 Dec;189(24):8863-70. doi: 10.1128/JB.01141-07. Epub 2007 Oct 5.
2007 Dec degradation 8 3 GH10, GH43_12, CBM91, GH67
PUL0274 RT-qPCR xylan Bifidobacterium animalis subsp. lactis <a href=https://pubmed.ncbi.nlm.nih.gov/23663691/>23663691</a>
Transcriptional analysis of oligosaccharide utilization by Bifidobacterium lactis Bl-04. BMC Genomics. 2013 May 10;14:312. doi: 10.1186/1471-2164-14-312.
2013 May 10 degradation 12 4 CE20, CE20, GH43_10, CBM91, GH43_11, CBM91, GH43_12
PUL0289 enzyme activity assay xylan Flavobacterium johnsoniae <a href=https://pubmed.ncbi.nlm.nih.gov/29588659/>29588659</a>
A novel acetyl xylan esterase enabling complete deacetylation of substituted xylans. Biotechnol Biofuels. 2018 Mar 22;11:74. doi: 10.1186/s13068-018-1074-3. eCollection 2018.
2018 degradation 12 7 CE6, CE1, GH115, GH146, GH3, GH43_10, CBM91, GH43_12, CBM91, GH97
PUL0294 gene trait matching exercise xylan Bifidobacterium longum <a href=https://pubmed.ncbi.nlm.nih.gov/29310579/>29310579</a>
Gene-trait matching across the Bifidobacterium longum pan-genome reveals considerable diversity in carbohydrate catabolism among human infant strains. BMC Genomics. 2018 Jan 8;19(1):33. doi: 10.1186/s12864-017-4388-9.
2018 Jan 8 degradation 12 3 GH120, GH43_11, CBM91, GH43_12
PUL0329 microarray, gas chromatography, mass spectrometry xylan Gramella flava <a href=https://pubmed.ncbi.nlm.nih.gov/28261179/>28261179</a>
Characterization of Potential Polysaccharide Utilization Systems in the Marine Bacteroidetes Gramella Flava JLT2011 Using a Multi-Omics Approach. Front Microbiol. 2017 Feb 14;8:220. doi: 10.3389/fmicb.2017.00220. eCollection 2017.
2017 degradation 25 9 CE15, CE20, CE20, GH10, GH115, GH3, GH43_1, GH43_10, CBM91, GH43_12, CBM91, GH67
PUL0330 fosmid library screen, enzyme activity assay, thin-layer chromatography pectin Gramella flava <a href=https://pubmed.ncbi.nlm.nih.gov/28261179/>28261179</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/30341080/>30341080</a>
Characterization of Potential Polysaccharide Utilization Systems in the Marine Bacteroidetes Gramella Flava JLT2011 Using a Multi-Omics Approach. Biochemical Reconstruction of a Metabolic Pathway from a Marine Bacterium Reveals Its Mechanism of Pectin Depolymerization. Front Microbiol. 2017 Feb 14;8:220. doi: 10.3389/fmicb.2017.00220. eCollection 2017. Appl Environ Microbiol. 2018 Dec 13;85(1):e02114-18. doi: 10.1128/AEM.02114-18. Print 2019 Jan 1.
2017,2019 Jan 1 degradation 28 10 CE12, CE8, GH105, GH28, GH28, PL9_1, GH43_10, CBM91, PL10_1, PL9_1
PUL0345 qRT-PCR, enzyme activity assay xylan Bacteroides intestinalis <a href=https://pubmed.ncbi.nlm.nih.gov/27681607/>27681607</a>
Bacteroides intestinalis DSM 17393, a member of the human colonic microbiome, upregulates multiple endoxylanases during growth on xylan. Sci Rep. 2016 Sep 29;6:34360. doi: 10.1038/srep34360.
2016 Sep 29 degradation 31 13 CE1, CE20, CE20, CE6, GH95, GH10, GH10, GH43_12, CBM91, GH115, GH35, GH43_1, GH5_21, GH67, GH8
PUL0346 gene deletion mutant and growth assay xylan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/24066026/>24066026</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/27573446/>27573446</a>
Functional metagenomics reveals novel pathways of prebiotic breakdown by human gut bacteria. Functional characterization of a gene locus from an uncultured gut Bacteroides conferring xylo-oligosaccharides utilization to Escherichia coli. PLoS One. 2013 Sep 16;8(9):e72766. doi: 10.1371/journal.pone.0072766. eCollection 2013. Mol Microbiol. 2016 Nov;102(4):579-592. doi: 10.1111/mmi.13480. Epub 2016 Sep 14.
2013,2016 Nov degradation 13 5 GH10, GH16_3, GH43_1, GH43_12, CBM91, GH43_29
PUL0402 Northern Blot, enzyme activity assay xylan Lactococcus lactis subsp. lactis IO-1 <a href=https://pubmed.ncbi.nlm.nih.gov/11282589/>11282589</a>
Genetic evidence for a defective xylan degradation pathway in Lactococcus lactis. Appl Environ Microbiol. 2001 Apr;67(4):1445-52. doi: 10.1128/AEM.67.4.1445-1452.2001.
2001 Apr degradation 6 1 GH43_11, CBM91
PUL0457 high-performance anion-exchange chromatography, enzyme activity assay, RNA-seq xylan Lactobacillus rossiae <a href=https://pubmed.ncbi.nlm.nih.gov/27142164/>27142164</a>
Cloning, expression and characterization of a beta-D-xylosidase from Lactobacillus rossiae DSM 15814(T). Microb Cell Fact. 2016 May 3;15:72. doi: 10.1186/s12934-016-0473-z.
2016 May 3 degradation 7 1 GH43_11, CBM91
PUL0484 growth assay pectin Flavobacterium johnsoniae <a href=https://pubmed.ncbi.nlm.nih.gov/19717629/>19717629</a>
Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl Environ Microbiol. 2009 Nov;75(21):6864-75. doi: 10.1128/AEM.01495-09. Epub 2009 Aug 28.
2009 Nov degradation 12 8 CE12, GH105, GH28, GH43_10, CBM91, PL10_1, CE8
PUL0520 clone and expression, enzyme activity assay xylan Klebsiella oxytoca <a href=https://pubmed.ncbi.nlm.nih.gov/14532050/>14532050</a>
Cloning, characterization, and functional expression of the Klebsiella oxytoca xylodextrin utilization operon (xynTB) in Escherichia coli. Appl Environ Microbiol. 2003 Oct;69(10):5957-67. doi: 10.1128/AEM.69.10.5957-5967.2003.
2003 Oct degradation 2 1 GH43_11, CBM91
PUL0527 microarray, qPCR xyloglucan Bacteroides ovatus <a href=https://pubmed.ncbi.nlm.nih.gov/22205877/>22205877</a>
Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 2011 Dec;9(12):e1001221. doi: 10.1371/journal.pbio.1001221. Epub 2011 Dec 20.
2011 Dec degradation 16 8 GH2, GH3, GH31_4, GH43_12, CBM91, GH5_4, GH9
PUL0529 microarray, qPCR, RNA-seq, reducing-sugar assay, growth assay pectin Bacteroides ovatus <a href=https://pubmed.ncbi.nlm.nih.gov/22205877/>22205877</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/39892338/>39892338</a>
Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. In vitro fermentation of a purified fraction of polysaccharides from the root of Brassica rapa L. by human gut microbiota and its interaction with Bacteroides ovatus. PLoS Biol. 2011 Dec;9(12):e1001221. doi: 10.1371/journal.pbio.1001221. Epub 2011 Dec 20. Food Chem. 2025 May 1;473:143109. doi: 10.1016/j.foodchem.2025.143109. Epub 2025 Jan 27.
2011 Dec,2025 May 1 degradation 27 13 CE12, CE8, CE8, GH105, GH28, GH3, GH43_10, CBM91, PL1_2
PUL0542 binding assay xylan Geobacillus stearothermophilus <a href=https://pubmed.ncbi.nlm.nih.gov/10368143/>10368143</a>
The glucuronic acid utilization gene cluster from Bacillus stearothermophilus T-6. J Bacteriol. 1999 Jun;181(12):3695-704. doi: 10.1128/JB.181.12.3695-3704.1999.
1999 Jun degradation 29 7 CE4, GH10, GH39, GH43_11, CBM91, GH52, GH67
PUL0553 RT-PCR, qPCR xylan Bacteroides xylanisolvens <a href=https://pubmed.ncbi.nlm.nih.gov/27142817/>27142817</a>
Xylan degradation by the human gut Bacteroides xylanisolvens XB1A(T) involves two distinct gene clusters that are linked at the transcriptional level. BMC Genomics. 2016 May 4;17:326. doi: 10.1186/s12864-016-2680-8.
2016 May 4 degradation 22 13 CE6, CE1, GH10, GH115, GH3, GH31_4, GH43_10, CBM91, GH43_12, CBM91, GH43_29, CBM6, GH5_21, GH95, GH97
PUL0559 gene deletion mutant and growth assay, growth assay, enzyme activity assay, microarray, qPCR pectin Bacteroides thetaiotaomicron <a href=https://pubmed.ncbi.nlm.nih.gov/28329766/>28329766</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/18996345/>18996345</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/22205877/>22205877</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/16968696/>16968696</a>
Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. Functional genomic and metabolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period. Nature. 2017 Apr 6;544(7648):65-70. doi: 10.1038/nature21725. Epub 2017 Mar 22. Cell Host Microbe. 2008 Nov 13;4(5):447-57. doi: 10.1016/j.chom.2008.09.007. PLoS Biol. 2011 Dec;9(12):e1001221. doi: 10.1371/journal.pbio.1001221. Epub 2011 Dec 20. J Biol Chem. 2006 Nov 24;281(47):36269-79. doi: 10.1074/jbc.M606509200. Epub 2006 Sep 12.
2017 Apr 6,2008 Nov 13,2011 Dec,2006 Nov 24 degradation 12 4 GH29, GH43_10, CBM91, GH43_34, CBM32, GH97
PUL0592 qRT-PCR xylan Paenibacillus sp. JDR-2 <a href=https://pubmed.ncbi.nlm.nih.gov/25063665/>25063665</a>
GH51 arabinofuranosidase and its role in the methylglucuronoarabinoxylan utilization system in Paenibacillus sp. strain JDR-2. Appl Environ Microbiol. 2014 Oct;80(19):6114-25. doi: 10.1128/AEM.01684-14. Epub 2014 Jul 25.
2014 Oct degradation 8 3 GH10, GH43_12, CBM91, GH67
PUL0599 liquid chromatography and mass spectrometry, differential gene expression xylan Clostridium cellulovorans <a href=https://pubmed.ncbi.nlm.nih.gov/26020016/>26020016</a>
Elucidation of the recognition mechanisms for hemicellulose and pectin in Clostridium cellulovorans using intracellular quantitative proteome analysis. AMB Express. 2015 May 23;5:29. doi: 10.1186/s13568-015-0115-6. eCollection 2015.
2015 degradation 7 1 GH43_11, CBM91
PUL0610 enzyme activity assay, strcutural analysis xylan Rhodothermus marinus <a href=https://pubmed.ncbi.nlm.nih.gov/31992772/>31992772</a>
Characterization and diversity of the complete set of GH family 3 enzymes from Rhodothermus marinus DSM 4253. Sci Rep. 2020 Jan 28;10(1):1329. doi: 10.1038/s41598-020-58015-5.
2020 Jan 28 degradation 15 6 CBM4, CBM4, GH10, GH10, GH3, GH43_15, CBM91, CBM6, GH67
PUL0625 RNA-seq xylan Prevotella sp. PMUR <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a>
Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27.
2020 Dec 9 degradation 18 10 CE1, CE1, CE1, GH115, GH30_8, GH43_10, CBM91, GH43_12, CBM91, GH43_29, CBM6, GH95, GH97
PUL0648 high-performance anion-exchange chromatography, substrate binding assay, thin-layer chromatography, NMR, mass spectrometry, crystallization xylan Dysgonomonas mossii DSM 22836 <a href=https://pubmed.ncbi.nlm.nih.gov/33667545/>33667545</a>
A polysaccharide utilization locus from the gut bacterium Dysgonomonas mossii encodes functionally distinct carbohydrate esterases. J Biol Chem. 2021 Jan-Jun;296:100500. doi: 10.1016/j.jbc.2021.100500. Epub 2021 Mar 2.
2021 Jan-Jun degradation 37 21 CE1, CE1, CE1, CE20, CE20, CE6, GH10, GH115, GH146, GH31_4, GH43_1, GH43_10, CBM91, GH43_12, CBM91, GH43_29, GH43_29, CBM6, GH51_2, GH67, GH8, GH97
PUL0666 UHPLC-MS, RNA-seq, RT-qPCR pectin Bacteroides thetaiotaomicron VPI-5482 <a href=https://pubmed.ncbi.nlm.nih.gov/34420703/>34420703</a>
Discrete genetic loci in human gut Bacteroides thetaiotaomicron confer pectin metabolism. Carbohydr Polym. 2021 Nov 15;272:118534. doi: 10.1016/j.carbpol.2021.118534. Epub 2021 Aug 6.
2021 Nov 15 degradation 4 4 GH35, GH43_19, GH43_9, CBM91, GH43_19, GH51_2
PUL0669 clone, high-performance anion-exchange chromatography, enzymatic product analysis xylan Bacteroides eggerthii 1_2_48FAA <a href=https://pubmed.ncbi.nlm.nih.gov/34480044/>34480044</a>
Characterization of a novel multidomain CE15-GH8 enzyme encoded by a polysaccharide utilization locus in the human gut bacterium Bacteroides eggerthii. Sci Rep. 2021 Sep 3;11(1):17662. doi: 10.1038/s41598-021-96659-z.
2021 Sep 3 degradation 26 15 CE1, CE15, GH8, CE20, CE20, CE6, GH10, GH115, GH31_4, GH35, GH43_1, GH43_10, CBM91, GH43_12, CBM91, GH5_21, GH67, GH95, GH97
PUL0682 enzyme activity assay, affinity gel electrophoresis xylan Bacteroidaceae bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/35110564/>35110564</a>
Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides. Nat Commun. 2022 Feb 2;13(1):629. doi: 10.1038/s41467-022-28310-y.
2022 Feb 2 degradation 3 3 CBM89, GH10, GH43_12, CBM91, GH97
PUL0687 growth assay, RNA-seq xylooligosaccharide Bacteroides vulgatus ATCC 8482 <a href=https://pubmed.ncbi.nlm.nih.gov/36043703/>36043703</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/27573446/>27573446</a>
Structural and Biochemical Characterization of a Nonbinding SusD-Like Protein Involved in Xylooligosaccharide Utilization by an Uncultured Human Gut Bacteroides Strain. Functional characterization of a gene locus from an uncultured gut Bacteroides conferring xylo-oligosaccharides utilization to Escherichia coli. mSphere. 2022 Oct 26;7(5):e0024422. doi: 10.1128/msphere.00244-22. Epub 2022 Aug 31. Mol Microbiol. 2016 Nov;102(4):579-592. doi: 10.1111/mmi.13480. Epub 2016 Sep 14.
2022 Oct 26,2016 Nov degradation 7 3 GH10, GH43_1, GH43_12, CBM91
PUL0689 clone and expression, crystallization, recombinant protein expression, thin-layer chromatography galactooligosaccharide Bacteroides thetaiotaomicron VPI-5482 <a href=https://pubmed.ncbi.nlm.nih.gov/34149636/>34149636</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/37598339/>37598339</a>
Analysis of Two SusE-Like Enzymes From Bacteroides thetaiotaomicron Reveals a Potential Degradative Capacity for This Protein Family. Dynamic genetic adaptation of Bacteroides thetaiotaomicron during murine gut colonization. Front Microbiol. 2021 Jun 4;12:645765. doi: 10.3389/fmicb.2021.645765. eCollection 2021. Cell Rep. 2023 Aug 29;42(8):113009. doi: 10.1016/j.celrep.2023.113009. Epub 2023 Aug 21.
2021,2023 Aug 29 degradation 10 4 GH2, CBM32, GH3, GH36, GH43_10, CBM91
PUL0694 recombinant protein expression, SDS-PAGE, HPLC xylan Caldicellulosiruptor bescii DSM 6725 <a href=https://pubmed.ncbi.nlm.nih.gov/36218355/>36218355</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/34060910/>34060910</a>
Biochemical and Regulatory Analyses of Xylanolytic Regulons in Caldicellulosiruptor bescii Reveal Genus-Wide Features of Hemicellulose Utilization. Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile Caldicellulosiruptor bescii. Appl Environ Microbiol. 2022 Nov 8;88(21):e0130222. doi: 10.1128/aem.01302-22. Epub 2022 Oct 11. mSystems. 2021 Jun 29;6(3):e0134520. doi: 10.1128/mSystems.01345-20. Epub 2021 Jun 1.
2022 Nov 8,2021 Jun 29 degradation 14 6 CBM22, CBM22, GH10, CE1, GH10, GH39, GH43_10, CBM22, CBM91, GH43_16, CBM6
PUL0701 qRT-PCR, enzyme activity assay xyloglucan Xanthomonas citri pv. citri str. 306 <a href=https://pubmed.ncbi.nlm.nih.gov/25595763/>25595763</a>
Xylan utilization regulon in Xanthomonas citri pv. citri Strain 306: gene expression and utilization of oligoxylosides. Appl Environ Microbiol. 2015 Mar;81(6):2163-72. doi: 10.1128/AEM.03091-14. Epub 2015 Jan 16.
2015 Mar degradation 31 8 CE20, CE20, GH10, GH2, GH3, GH43_1, GH43_12, CBM91, GH67
PUL0705 fluorophore-assisted carbohydrate electrophoresis (FACE), dinitrosalicylic acid-assay (DNS-assay), HPLC, clone and expression xylan Flavimarina sp. Hel_I_48 <a href=https://pubmed.ncbi.nlm.nih.gov/37121608/>37121608</a>
Marine Bacteroidetes enzymatically digest xylans from terrestrial plants. Environ Microbiol. 2023 Sep;25(9):1713-1727. doi: 10.1111/1462-2920.16390. Epub 2023 Apr 30.
2023 Sep degradation 14 8 CE6, CE1, CE1, GH10, GH43_10, CBM91, GH43_12, CBM91, GH8, GH95, GH97
PUL0706 RNA-seq, growth assay agar Pseudoalteromonas atlantica T6c <a href=https://pubmed.ncbi.nlm.nih.gov/37265394/>37265394</a>
Constructing Marine Bacterial Metabolic Chassis for Potential Biorefinery of Red Algal Biomass and Agaropectin Wastes. ACS Synth Biol. 2023 Jun 16;12(6):1782-1793. doi: 10.1021/acssynbio.3c00063. Epub 2023 Jun 2.
2023 Jun 16 degradation 43 15 CE20, CE20, GH117, GH117, GH140, GH16_12, GH16_14, GH2, GH29, GH3, GH43_12, CBM91, GH43_2, CBM6, GH86
PUL0722 RNA-seq, mass spectrometry, SDS-PAGE, isothermal titration calorimetry (ITC), high-performance anion-exchange chromatography, enzyme kinetic analysis, thin-layer chromatography xylan Polaribacter sp. Q13 <a href=https://pubmed.ncbi.nlm.nih.gov/38169280/>38169280</a>
The catabolic specialization of the marine bacterium Polaribacter sp. Q13 to red algal beta1,3/1,4-mixed-linkage xylan. Appl Environ Microbiol. 2024 Jan 24;90(1):e0170423. doi: 10.1128/aem.01704-23. Epub 2024 Jan 3.
2024 Jan 24 degradation 30 9 CBM4, CBM4, GH10, GH26, GH3, GH43_1, GH43_12, CBM91
PUL0739 mass spectrometry, SDS-PAGE, growth assay arabinogalactan Maribacter sp. MAR_2009_72 <a href=https://pubmed.ncbi.nlm.nih.gov/38569650/>38569650</a>
Proteomic insight into arabinogalactan utilization by particle-associated Maribacter sp. MAR_2009_72. FEMS Microbiol Ecol. 2024 Apr 10;100(5):fiae045. doi: 10.1093/femsec/fiae045.
2024 Apr 10 degradation 56 12 CE12, GH105, GH140, GH177, GH179, GH28, GH43_10, CBM91, GH43_19, GH43_34, GH51_1, PL10_1, CE8, PL1_2
PUL0743 gene mutant, SDS-PAGE, Western Blot, recombinant protein expression, thermal shift assay (TSA), isothermal titration calorimetry (ITC), HPAEC-PAD, RT-qPCR, fluorescence measurements xylan Ruminiclostridium cellulolyticum H10 <a href=https://pubmed.ncbi.nlm.nih.gov/36403068/>36403068</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/38789996/>38789996</a>
Selfish uptake versus extracellular arabinoxylan degradation in the primary degrader Ruminiclostridium cellulolyticum, a new string to its bow. Intracellular removal of acetyl, feruloyl and p-coumaroyl decorations on arabinoxylo-oligosaccharides imported from lignocellulosic biomass degradation by Ruminiclostridium cellulolyticum. Biotechnol Biofuels Bioprod. 2022 Nov 19;15(1):127. doi: 10.1186/s13068-022-02225-8. Microb Cell Fact. 2024 May 24;23(1):151. doi: 10.1186/s12934-024-02423-z.
2022 Nov 19,2024 May 24 degradation 13 6 CE1, CE20, CE20, GH39, GH43_10, CBM91, GH51_1, GH8
PUL0762 RNA-seq, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography Hemicellulose Segatella copri DSM 18205 <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a>
Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5.
2025 Jan 31 degradation 9 3 GH10, GH43_12, CBM91, GH5_21
PUL0764 RNA-seq, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography Hemicellulose Segatella copri DSM 18205 <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a>
Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5.
2025 Jan 31 degradation 4 4 GH43_10, CBM91, GH43_29, CBM6, GH43_29, CBM6, GH43_10, CBM91, GH95
PUL0767 RNA-seq, qRT-PCR, gas chromatography, mass spectrometry, thin-layer chromatography pectin Segatella copri DSM 18205 <a href=https://pubmed.ncbi.nlm.nih.gov/39636128/>39636128</a>
Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol. 2025 Jan 31;91(1):e0175924. doi: 10.1128/aem.01759-24. Epub 2024 Dec 5.
2025 Jan 31 degradation 15 6 CE8, GH28, GH28, GH105, GH43_10, CBM91, GH95, PL1_2
PUL0792 enzyme activity assay, recombinant protein expression, RNA-seq xylan Bifidobacterium pseudocatenulatum strain YIT11952 <a href=https://pubmed.ncbi.nlm.nih.gov/37938239/>37938239</a>
Xylan utilisation promotes adaptation of Bifidobacterium pseudocatenulatum to the human gastrointestinal tract. ISME Commun. 2021 Oct 28;1(1):62. doi: 10.1038/s43705-021-00066-4.
2021 Oct 28 degradation 15 5 CE20, GH10, CBM9, GH120, GH43_11, CBM91, GH8