| PULID | Characterization Method(s) | Substrate | Organism | Publication | Publish Date | Type | Num Genes | Num CAZymes | CazyFamily |
|---|---|---|---|---|---|---|---|---|---|
| PUL0003 | RT-PCR | xylan | Bacillus subtilis | <a href=https://pubmed.ncbi.nlm.nih.gov/26559526/>26559526</a> Metabolic potential of Bacillus subtilis 168 for the direct conversion of xylans to fermentation products. Appl Microbiol Biotechnol. 2016 Feb;100(3):1501-1510. doi: 10.1007/s00253-015-7124-x. Epub 2015 Nov 12. |
2016 Feb | degradation | 2 | 2 | GH30_8, GH43_16, CBM6 |
| PUL0010 | enzyme activity assay, liquid chromatography and mass spectrometry | xylan | Geobacillus thermodenitrificans | <a href=https://pubmed.ncbi.nlm.nih.gov/28616644/>28616644</a> Synergistic hydrolysis of xylan using novel xylanases, beta-xylosidases, and an alpha-L-arabinofuranosidase from Geobacillus thermodenitrificans NG80-2. Appl Microbiol Biotechnol. 2017 Aug;101(15):6023-6037. doi: 10.1007/s00253-017-8341-2. Epub 2017 Jun 14. |
2017 Aug | degradation | 42 | 8 | CE4, GH10, GH39, GH43_11, CBM91, GH51_1, GH52, GH67 |
| PUL0078 | enzyme activity assay | xylan | Caldicellulosiruptor sp. Rt8B.4 | <a href=https://pubmed.ncbi.nlm.nih.gov/8920183/>8920183</a> Cloning, sequencing and overexpression in Escherichia coli of a xylanase gene, xynA from the thermophilic bacterium Rt8B.4 genus Caldicellulosiruptor. Appl Microbiol Biotechnol. 1996 Mar;45(1-2):86-93. doi: 10.1007/s002530050653. |
1996 Mar | degradation | 6 | 1 | CBM22, CBM22, GH10 |
| PUL0140 | sequence homology analysis | xylan | Bifidobacterium animalis subsp. animalis | <a href=https://pubmed.ncbi.nlm.nih.gov/30306201/>30306201</a> Staying alive: growth and survival of Bifidobacterium animalis subsp. animalis under in vitro and in vivo conditions. Appl Microbiol Biotechnol. 2018 Dec;102(24):10645-10663. doi: 10.1007/s00253-018-9413-7. Epub 2018 Oct 10. |
2018 Dec | degradation | 11 | 4 | CE20, CE20, GH43_10, CBM91, GH43_11, CBM91, GH43_12 |
| PUL0227 | enzyme activity assay, substrate binding assay | xylan | Caldanaerobius polysaccharolyticus | <a href=https://pubmed.ncbi.nlm.nih.gov/22918832/>22918832</a> Biochemical and structural insights into xylan utilization by the thermophilic bacterium Caldanaerobius polysaccharolyticus. J Biol Chem. 2012 Oct 12;287(42):34946-34960. doi: 10.1074/jbc.M112.391532. Epub 2012 Aug 22. |
2012 Oct 12 | degradation | 10 | 3 | CE4, GH3, GH67 |
| PUL0229 | RT-PCR | xylan | Paenibacillus sp. JDR-2 | <a href=https://pubmed.ncbi.nlm.nih.gov/17921311/>17921311</a> Structure, function, and regulation of the aldouronate utilization gene cluster from Paenibacillus sp. strain JDR-2. J Bacteriol. 2007 Dec;189(24):8863-70. doi: 10.1128/JB.01141-07. Epub 2007 Oct 5. |
2007 Dec | degradation | 8 | 3 | GH10, GH43_12, CBM91, GH67 |
| PUL0262 | RNA-seq | xylan | Bacteroides cellulosilyticus | <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a> Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20. |
2013 | degradation | 12 | 6 | CE1, CE6, GH95, GH10, GH5_21, GH8 |
| PUL0263 | RNA-seq | xylan | Bacteroides cellulosilyticus | <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/30674645/>30674645</a> Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. Wood-Derived Dietary Fibers Promote Beneficial Human Gut Microbiota. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20. mSphere. 2019 Jan 23;4(1):e00554-18. doi: 10.1128/mSphere.00554-18. |
2013,2019 Jan 23 | degradation | 5 | 1 | GH10 |
| PUL0274 | RT-qPCR | xylan | Bifidobacterium animalis subsp. lactis | <a href=https://pubmed.ncbi.nlm.nih.gov/23663691/>23663691</a> Transcriptional analysis of oligosaccharide utilization by Bifidobacterium lactis Bl-04. BMC Genomics. 2013 May 10;14:312. doi: 10.1186/1471-2164-14-312. |
2013 May 10 | degradation | 12 | 4 | CE20, CE20, GH43_10, CBM91, GH43_11, CBM91, GH43_12 |
| PUL0289 | enzyme activity assay | xylan | Flavobacterium johnsoniae | <a href=https://pubmed.ncbi.nlm.nih.gov/29588659/>29588659</a> A novel acetyl xylan esterase enabling complete deacetylation of substituted xylans. Biotechnol Biofuels. 2018 Mar 22;11:74. doi: 10.1186/s13068-018-1074-3. eCollection 2018. |
2018 | degradation | 12 | 7 | CE6, CE1, GH115, GH146, GH3, GH43_10, CBM91, GH43_12, CBM91, GH97 |
| PUL0294 | gene trait matching exercise | xylan | Bifidobacterium longum | <a href=https://pubmed.ncbi.nlm.nih.gov/29310579/>29310579</a> Gene-trait matching across the Bifidobacterium longum pan-genome reveals considerable diversity in carbohydrate catabolism among human infant strains. BMC Genomics. 2018 Jan 8;19(1):33. doi: 10.1186/s12864-017-4388-9. |
2018 Jan 8 | degradation | 12 | 3 | GH120, GH43_11, CBM91, GH43_12 |
| PUL0328 | microarray, gas chromatography, mass spectrometry | xylan | Gramella flava | <a href=https://pubmed.ncbi.nlm.nih.gov/28261179/>28261179</a> Characterization of Potential Polysaccharide Utilization Systems in the Marine Bacteroidetes Gramella Flava JLT2011 Using a Multi-Omics Approach. Front Microbiol. 2017 Feb 14;8:220. doi: 10.3389/fmicb.2017.00220. eCollection 2017. |
2017 | degradation | 10 | 5 | GH127, GH2, GH43, GH43_26, GH5_13 |
| PUL0329 | microarray, gas chromatography, mass spectrometry | xylan | Gramella flava | <a href=https://pubmed.ncbi.nlm.nih.gov/28261179/>28261179</a> Characterization of Potential Polysaccharide Utilization Systems in the Marine Bacteroidetes Gramella Flava JLT2011 Using a Multi-Omics Approach. Front Microbiol. 2017 Feb 14;8:220. doi: 10.3389/fmicb.2017.00220. eCollection 2017. |
2017 | degradation | 25 | 9 | CE15, CE20, CE20, GH10, GH115, GH3, GH43_1, GH43_10, CBM91, GH43_12, CBM91, GH67 |
| PUL0335 | fosmid library screen, enzyme activity assay, thin-layer chromatography | xylan | uncultured bacterium | <a href=https://pubmed.ncbi.nlm.nih.gov/28091525/>28091525</a> A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic. Sci Rep. 2017 Jan 16;7:40248. doi: 10.1038/srep40248. |
2017 Jan 16 | degradation | 31 | 5 | GH13_46, GH158, GH16_3, GH3, GH97 |
| PUL0336 | fosmid library screen, enzyme activity assay, thin-layer chromatography | xylan | uncultured bacterium | <a href=https://pubmed.ncbi.nlm.nih.gov/28091525/>28091525</a> A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic. Sci Rep. 2017 Jan 16;7:40248. doi: 10.1038/srep40248. |
2017 Jan 16 | degradation | 25 | 4 | GH158, GH16_3, GH3, GT2 |
| PUL0337 | fosmid library screen, enzyme activity assay, thin-layer chromatography | xylan | uncultured bacterium | <a href=https://pubmed.ncbi.nlm.nih.gov/28091525/>28091525</a> A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic. Sci Rep. 2017 Jan 16;7:40248. doi: 10.1038/srep40248. |
2017 Jan 16 | degradation | 29 | 4 | GH158, GH16_3, GH3, GT2 |
| PUL0338 | fosmid library screen, enzyme activity assay, thin-layer chromatography | xylan | uncultured bacterium | <a href=https://pubmed.ncbi.nlm.nih.gov/28091525/>28091525</a> A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic. Sci Rep. 2017 Jan 16;7:40248. doi: 10.1038/srep40248. |
2017 Jan 16 | degradation | 34 | 5 | GH158, GH16_3, GH3, GH97, GT2 |
| PUL0339 | fosmid library screen, enzyme activity assay, thin-layer chromatography | xylan | uncultured bacterium | <a href=https://pubmed.ncbi.nlm.nih.gov/28091525/>28091525</a> A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic. Sci Rep. 2017 Jan 16;7:40248. doi: 10.1038/srep40248. |
2017 Jan 16 | degradation | 24 | 4 | GH16_3, GH20, GH3, GH97 |
| PUL0342 | enzyme activity assay, gene deletion mutant and growth assay | xylan | Prevotella ruminicola | <a href=https://pubmed.ncbi.nlm.nih.gov/19304844/>19304844</a> Biochemical analysis of a beta-D-xylosidase and a bifunctional xylanase-ferulic acid esterase from a xylanolytic gene cluster in Prevotella ruminicola 23. J Bacteriol. 2009 May;191(10):3328-38. doi: 10.1128/JB.01628-08. Epub 2009 Mar 20. |
2009 May | degradation | 5 | 3 | GH10, CE1, GH3, GH95 |
| PUL0345 | qRT-PCR, enzyme activity assay | xylan | Bacteroides intestinalis | <a href=https://pubmed.ncbi.nlm.nih.gov/27681607/>27681607</a> Bacteroides intestinalis DSM 17393, a member of the human colonic microbiome, upregulates multiple endoxylanases during growth on xylan. Sci Rep. 2016 Sep 29;6:34360. doi: 10.1038/srep34360. |
2016 Sep 29 | degradation | 31 | 13 | CE1, CE20, CE20, CE6, GH95, GH10, GH10, GH43_12, CBM91, GH115, GH35, GH43_1, GH5_21, GH67, GH8 |
| PUL0346 | gene deletion mutant and growth assay | xylan | uncultured bacterium | <a href=https://pubmed.ncbi.nlm.nih.gov/24066026/>24066026</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/27573446/>27573446</a> Functional metagenomics reveals novel pathways of prebiotic breakdown by human gut bacteria. Functional characterization of a gene locus from an uncultured gut Bacteroides conferring xylo-oligosaccharides utilization to Escherichia coli. PLoS One. 2013 Sep 16;8(9):e72766. doi: 10.1371/journal.pone.0072766. eCollection 2013. Mol Microbiol. 2016 Nov;102(4):579-592. doi: 10.1111/mmi.13480. Epub 2016 Sep 14. |
2013,2016 Nov | degradation | 13 | 5 | GH10, GH16_3, GH43_1, GH43_12, CBM91, GH43_29 |
| PUL0364 | enzyme activity assay | xylan | Xanthomonas campestris pv. campestris | <a href=https://pubmed.ncbi.nlm.nih.gov/17311090/>17311090</a> Plant carbohydrate scavenging through tonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS One. 2007 Feb 21;2(2):e224. doi: 10.1371/journal.pone.0000224. |
2007 Feb 21 | degradation | 8 | 4 | GH10, GH2, GH43_1 |
| PUL0390 | enzyme activity assay | xylan | Thermotoga maritima | <a href=https://pubmed.ncbi.nlm.nih.gov/21255309/>21255309</a> Hyperthermostable acetyl xylan esterase. Microb Biotechnol. 2010 Jan;3(1):84-92. doi: 10.1111/j.1751-7915.2009.00150.x. Epub 2009 Sep 18. |
2010 Jan | degradation | 24 | 6 | CBM22, CBM22, CBM22, GH10, CBM9, CBM9, CE7, GH10, GH3, GH67 |
| PUL0392 | RT-PCR, qPCR | xylan | Bacteroides xylanisolvens | <a href=https://pubmed.ncbi.nlm.nih.gov/27142817/>27142817</a> Xylan degradation by the human gut Bacteroides xylanisolvens XB1A(T) involves two distinct gene clusters that are linked at the transcriptional level. BMC Genomics. 2016 May 4;17:326. doi: 10.1186/s12864-016-2680-8. |
2016 May 4 | degradation | 8 | 3 | CE20, CE20, GH13_14, GH67 |
| PUL0402 | Northern Blot, enzyme activity assay | xylan | Lactococcus lactis subsp. lactis IO-1 | <a href=https://pubmed.ncbi.nlm.nih.gov/11282589/>11282589</a> Genetic evidence for a defective xylan degradation pathway in Lactococcus lactis. Appl Environ Microbiol. 2001 Apr;67(4):1445-52. doi: 10.1128/AEM.67.4.1445-1452.2001. |
2001 Apr | degradation | 6 | 1 | GH43_11, CBM91 |
| PUL0411 | enzyme activity assay | xylan | Prevotella bryantii | <a href=https://pubmed.ncbi.nlm.nih.gov/7487028/>7487028</a> A xylan hydrolase gene cluster in Prevotella ruminicola B(1)4: sequence relationships, synergistic interactions, and oxygen sensitivity of a novel enzyme with exoxylanase and beta-(1,4)-xylosidase activities. Appl Environ Microbiol. 1995 Aug;61(8):2958-64. doi: 10.1128/aem.61.8.2958-2964.1995. |
1995 Aug | degradation | 2 | 2 | GH10, GH43_1 |
| PUL0414 | enzyme activity assay, thin-layer chromatography | xylan | uncultured bacterium 35A20 | <a href=https://pubmed.ncbi.nlm.nih.gov/30116044/>30116044</a> Functional metagenomics reveals abundant polysaccharide-degrading gene clusters and cellobiose utilization pathways within gut microbiota of a wood-feeding higher termite. ISME J. 2019 Jan;13(1):104-117. doi: 10.1038/s41396-018-0255-1. Epub 2018 Aug 16. |
2019 Jan | degradation | 25 | 4 | GH1, GH10 |
| PUL0415 | microarray | xylan | Bacteroides ovatus | <a href=https://pubmed.ncbi.nlm.nih.gov/22205877/>22205877</a> Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 2011 Dec;9(12):e1001221. doi: 10.1371/journal.pbio.1001221. Epub 2011 Dec 20. |
2011 Dec | degradation | 4 | 2 | GH20, GH20, CBM32 |
| PUL0456 | microarray, RNA-seq | xylan | Prevotella bryantii | <a href=https://pubmed.ncbi.nlm.nih.gov/20622018/>20622018</a> Transcriptomic analyses of xylan degradation by Prevotella bryantii and insights into energy acquisition by xylanolytic bacteroidetes. J Biol Chem. 2010 Sep 24;285(39):30261-73. doi: 10.1074/jbc.M110.141788. Epub 2010 Jul 9. |
2010 Sep 24 | degradation | 12 | 4 | GH43_10, GH43_1, GH67, GH10 |
| PUL0457 | high-performance anion-exchange chromatography, enzyme activity assay, RNA-seq | xylan | Lactobacillus rossiae | <a href=https://pubmed.ncbi.nlm.nih.gov/27142164/>27142164</a> Cloning, expression and characterization of a beta-D-xylosidase from Lactobacillus rossiae DSM 15814(T). Microb Cell Fact. 2016 May 3;15:72. doi: 10.1186/s12934-016-0473-z. |
2016 May 3 | degradation | 7 | 1 | GH43_11, CBM91 |
| PUL0474 | growth assay | xylan | Flavobacterium johnsoniae | <a href=https://pubmed.ncbi.nlm.nih.gov/19717629/>19717629</a> Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl Environ Microbiol. 2009 Nov;75(21):6864-75. doi: 10.1128/AEM.01495-09. Epub 2009 Aug 28. |
2009 Nov | degradation | 9 | 5 | GH3, GH30_1, GH30_3 |
| PUL0480 | growth assay | xylan | Flavobacterium johnsoniae | <a href=https://pubmed.ncbi.nlm.nih.gov/19717629/>19717629</a> Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl Environ Microbiol. 2009 Nov;75(21):6864-75. doi: 10.1128/AEM.01495-09. Epub 2009 Aug 28. |
2009 Nov | degradation | 9 | 4 | GH10, GH16, GH3, GH8 |
| PUL0508 | clone and expression, enzyme activity assay | xylan | Streptomyces thermoviolaceus | <a href=https://pubmed.ncbi.nlm.nih.gov/14761997/>14761997</a> Molecular characterization of a high-affinity xylobiose transporter of Streptomyces thermoviolaceus OPC-520 and its transcriptional regulation. J Bacteriol. 2004 Feb;186(4):1029-37. doi: 10.1128/JB.186.4.1029-1037.2004. |
2004 Feb | degradation | 5 | 1 | GH3 |
| PUL0520 | clone and expression, enzyme activity assay | xylan | Klebsiella oxytoca | <a href=https://pubmed.ncbi.nlm.nih.gov/14532050/>14532050</a> Cloning, characterization, and functional expression of the Klebsiella oxytoca xylodextrin utilization operon (xynTB) in Escherichia coli. Appl Environ Microbiol. 2003 Oct;69(10):5957-67. doi: 10.1128/AEM.69.10.5957-5967.2003. |
2003 Oct | degradation | 2 | 1 | GH43_11, CBM91 |
| PUL0533 | RNA-seq | xylan | Bacteroides cellulosilyticus | <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a> Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20. |
2013 | degradation | 9 | 3 | GH10, GH115, GH30_8 |
| PUL0542 | binding assay | xylan | Geobacillus stearothermophilus | <a href=https://pubmed.ncbi.nlm.nih.gov/10368143/>10368143</a> The glucuronic acid utilization gene cluster from Bacillus stearothermophilus T-6. J Bacteriol. 1999 Jun;181(12):3695-704. doi: 10.1128/JB.181.12.3695-3704.1999. |
1999 Jun | degradation | 29 | 7 | CE4, GH10, GH39, GH43_11, CBM91, GH52, GH67 |
| PUL0553 | RT-PCR, qPCR | xylan | Bacteroides xylanisolvens | <a href=https://pubmed.ncbi.nlm.nih.gov/27142817/>27142817</a> Xylan degradation by the human gut Bacteroides xylanisolvens XB1A(T) involves two distinct gene clusters that are linked at the transcriptional level. BMC Genomics. 2016 May 4;17:326. doi: 10.1186/s12864-016-2680-8. |
2016 May 4 | degradation | 22 | 13 | CE6, CE1, GH10, GH115, GH3, GH31_4, GH43_10, CBM91, GH43_12, CBM91, GH43_29, CBM6, GH5_21, GH95, GH97 |
| PUL0592 | qRT-PCR | xylan | Paenibacillus sp. JDR-2 | <a href=https://pubmed.ncbi.nlm.nih.gov/25063665/>25063665</a> GH51 arabinofuranosidase and its role in the methylglucuronoarabinoxylan utilization system in Paenibacillus sp. strain JDR-2. Appl Environ Microbiol. 2014 Oct;80(19):6114-25. doi: 10.1128/AEM.01684-14. Epub 2014 Jul 25. |
2014 Oct | degradation | 8 | 3 | GH10, GH43_12, CBM91, GH67 |
| PUL0594 | qRT-PCR | xylan | Paenibacillus sp. JDR-2 | <a href=https://pubmed.ncbi.nlm.nih.gov/25063665/>25063665</a> GH51 arabinofuranosidase and its role in the methylglucuronoarabinoxylan utilization system in Paenibacillus sp. strain JDR-2. Appl Environ Microbiol. 2014 Oct;80(19):6114-25. doi: 10.1128/AEM.01684-14. Epub 2014 Jul 25. |
2014 Oct | degradation | 5 | 1 | GH51_1 |
| PUL0598 | liquid chromatography and mass spectrometry, differential gene expression | xylan | Clostridium cellulovorans 743B | <a href=https://pubmed.ncbi.nlm.nih.gov/26020016/>26020016</a> Elucidation of the recognition mechanisms for hemicellulose and pectin in Clostridium cellulovorans using intracellular quantitative proteome analysis. AMB Express. 2015 May 23;5:29. doi: 10.1186/s13568-015-0115-6. eCollection 2015. |
2015 | degradation | 4 | 1 | GH95 |
| PUL0599 | liquid chromatography and mass spectrometry, differential gene expression | xylan | Clostridium cellulovorans | <a href=https://pubmed.ncbi.nlm.nih.gov/26020016/>26020016</a> Elucidation of the recognition mechanisms for hemicellulose and pectin in Clostridium cellulovorans using intracellular quantitative proteome analysis. AMB Express. 2015 May 23;5:29. doi: 10.1186/s13568-015-0115-6. eCollection 2015. |
2015 | degradation | 7 | 1 | GH43_11, CBM91 |
| PUL0602 | sequence homology analysis | xylan | Parageobacillus thermoglucosidasius | <a href=https://pubmed.ncbi.nlm.nih.gov/26442136/>26442136</a> Complete genome sequence of Geobacillus thermoglucosidasius C56-YS93, a novel biomass degrader isolated from obsidian hot spring in Yellowstone National Park. Stand Genomic Sci. 2015 Oct 5;10:73. doi: 10.1186/s40793-015-0031-z. eCollection 2015. |
2015 | degradation | 26 | 6 | CE4, GH10, GH39, GH52, GH67 |
| PUL0610 | enzyme activity assay, strcutural analysis | xylan | Rhodothermus marinus | <a href=https://pubmed.ncbi.nlm.nih.gov/31992772/>31992772</a> Characterization and diversity of the complete set of GH family 3 enzymes from Rhodothermus marinus DSM 4253. Sci Rep. 2020 Jan 28;10(1):1329. doi: 10.1038/s41598-020-58015-5. |
2020 Jan 28 | degradation | 15 | 6 | CBM4, CBM4, GH10, GH10, GH3, GH43_15, CBM91, CBM6, GH67 |
| PUL0617 | RNA-seq | xylan | Prevotella sp. PINT | <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a> Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27. |
2020 Dec 9 | degradation | 14 | 6 | GH10, GH43_1, GH43_35, GH5_21, GH67 |
| PUL0619 | RNA-seq | xylan | Prevotella sp. PROD | <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a> Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27. |
2020 Dec 9 | degradation | 5 | 1 | GH35 |
| PUL0620 | RNA-seq | xylan | Prevotella sp. PROD | <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a> Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27. |
2020 Dec 9 | degradation | 10 | 2 | GH128, GH51_2, GH43_19 |
| PUL0622 | RNA-seq | xylan | Prevotella sp. PROD | <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a> Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27. |
2020 Dec 9 | degradation | 15 | 6 | CE2, GH2, GH3, GH43_7, GH43_7, PL11_1 |
| PUL0624 | RNA-seq | xylan | Prevotella sp. PMUR | <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a> Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27. |
2020 Dec 9 | degradation | 11 | 3 | GH128, GH43_24, GH51_2, GH43_19 |
| PUL0625 | RNA-seq | xylan | Prevotella sp. PMUR | <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a> Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27. |
2020 Dec 9 | degradation | 18 | 10 | CE1, CE1, CE1, GH115, GH30_8, GH43_10, CBM91, GH43_12, CBM91, GH43_29, CBM6, GH95, GH97 |
| PUL0630 | enzyme activity assay, affinity gel electrophoresis | xylan | termite gut metagenome | <a href=https://pubmed.ncbi.nlm.nih.gov/33187992/>33187992</a> Multimodularity of a GH10 Xylanase Found in the Termite Gut Metagenome. Appl Environ Microbiol. 2021 Jan 15;87(3):e01714-20. doi: 10.1128/AEM.01714-20. Print 2021 Jan 15. |
2021 Jan 15 | degradation | 9 | 5 | CE20, CE20, GH11, GH10, GH115, GH43_1 |
| PUL0648 | high-performance anion-exchange chromatography, substrate binding assay, thin-layer chromatography, NMR, mass spectrometry, crystallization | xylan | Dysgonomonas mossii DSM 22836 | <a href=https://pubmed.ncbi.nlm.nih.gov/33667545/>33667545</a> A polysaccharide utilization locus from the gut bacterium Dysgonomonas mossii encodes functionally distinct carbohydrate esterases. J Biol Chem. 2021 Jan-Jun;296:100500. doi: 10.1016/j.jbc.2021.100500. Epub 2021 Mar 2. |
2021 Jan-Jun | degradation | 37 | 21 | CE1, CE1, CE1, CE20, CE20, CE6, GH10, GH115, GH146, GH31_4, GH43_1, GH43_10, CBM91, GH43_12, CBM91, GH43_29, GH43_29, CBM6, GH51_2, GH67, GH8, GH97 |
| PUL0669 | clone, high-performance anion-exchange chromatography, enzymatic product analysis | xylan | Bacteroides eggerthii 1_2_48FAA | <a href=https://pubmed.ncbi.nlm.nih.gov/34480044/>34480044</a> Characterization of a novel multidomain CE15-GH8 enzyme encoded by a polysaccharide utilization locus in the human gut bacterium Bacteroides eggerthii. Sci Rep. 2021 Sep 3;11(1):17662. doi: 10.1038/s41598-021-96659-z. |
2021 Sep 3 | degradation | 26 | 15 | CE1, CE15, GH8, CE20, CE20, CE6, GH10, GH115, GH31_4, GH35, GH43_1, GH43_10, CBM91, GH43_12, CBM91, GH5_21, GH67, GH95, GH97 |
| PUL0682 | enzyme activity assay, affinity gel electrophoresis | xylan | Bacteroidaceae bacterium | <a href=https://pubmed.ncbi.nlm.nih.gov/35110564/>35110564</a> Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides. Nat Commun. 2022 Feb 2;13(1):629. doi: 10.1038/s41467-022-28310-y. |
2022 Feb 2 | degradation | 3 | 3 | CBM89, GH10, GH43_12, CBM91, GH97 |
| PUL0694 | recombinant protein expression, SDS-PAGE, HPLC | xylan | Caldicellulosiruptor bescii DSM 6725 | <a href=https://pubmed.ncbi.nlm.nih.gov/36218355/>36218355</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/34060910/>34060910</a> Biochemical and Regulatory Analyses of Xylanolytic Regulons in Caldicellulosiruptor bescii Reveal Genus-Wide Features of Hemicellulose Utilization. Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile Caldicellulosiruptor bescii. Appl Environ Microbiol. 2022 Nov 8;88(21):e0130222. doi: 10.1128/aem.01302-22. Epub 2022 Oct 11. mSystems. 2021 Jun 29;6(3):e0134520. doi: 10.1128/mSystems.01345-20. Epub 2021 Jun 1. |
2022 Nov 8,2021 Jun 29 | degradation | 14 | 6 | CBM22, CBM22, GH10, CE1, GH10, GH39, GH43_10, CBM22, CBM91, GH43_16, CBM6 |
| PUL0695 | recombinant protein expression, SDS-PAGE, HPLC | xylan | Caldicellulosiruptor bescii DSM 6725 | <a href=https://pubmed.ncbi.nlm.nih.gov/36218355/>36218355</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/34060910/>34060910</a> Biochemical and Regulatory Analyses of Xylanolytic Regulons in Caldicellulosiruptor bescii Reveal Genus-Wide Features of Hemicellulose Utilization. Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile Caldicellulosiruptor bescii. Appl Environ Microbiol. 2022 Nov 8;88(21):e0130222. doi: 10.1128/aem.01302-22. Epub 2022 Oct 11. mSystems. 2021 Jun 29;6(3):e0134520. doi: 10.1128/mSystems.01345-20. Epub 2021 Jun 1. |
2022 Nov 8,2021 Jun 29 | degradation | 5 | 1 | CBM22, CBM22, GH10 |
| PUL0696 | recombinant protein expression, SDS-PAGE, HPLC | xylan | Caldicellulosiruptor bescii DSM 6725 | <a href=https://pubmed.ncbi.nlm.nih.gov/36218355/>36218355</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/34060910/>34060910</a> Biochemical and Regulatory Analyses of Xylanolytic Regulons in Caldicellulosiruptor bescii Reveal Genus-Wide Features of Hemicellulose Utilization. Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile Caldicellulosiruptor bescii. Appl Environ Microbiol. 2022 Nov 8;88(21):e0130222. doi: 10.1128/aem.01302-22. Epub 2022 Oct 11. mSystems. 2021 Jun 29;6(3):e0134520. doi: 10.1128/mSystems.01345-20. Epub 2021 Jun 1. |
2022 Nov 8,2021 Jun 29 | degradation | 11 | 2 | GH2, GH67 |
| PUL0697 | recombinant protein expression, SDS-PAGE, HPLC | xylan | Caldicellulosiruptor bescii DSM 6725 | <a href=https://pubmed.ncbi.nlm.nih.gov/36218355/>36218355</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/34060910/>34060910</a> Biochemical and Regulatory Analyses of Xylanolytic Regulons in Caldicellulosiruptor bescii Reveal Genus-Wide Features of Hemicellulose Utilization. Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile Caldicellulosiruptor bescii. Appl Environ Microbiol. 2022 Nov 8;88(21):e0130222. doi: 10.1128/aem.01302-22. Epub 2022 Oct 11. mSystems. 2021 Jun 29;6(3):e0134520. doi: 10.1128/mSystems.01345-20. Epub 2021 Jun 1. |
2022 Nov 8,2021 Jun 29 | degradation | 3 | 3 | CE20, CE20, CE4, GH10 |
| PUL0704 | fluorophore-assisted carbohydrate electrophoresis (FACE), dinitrosalicylic acid-assay (DNS-assay), HPLC, clone and expression | xylan | Flavimarina sp. Hel_I_48 | <a href=https://pubmed.ncbi.nlm.nih.gov/37121608/>37121608</a> Marine Bacteroidetes enzymatically digest xylans from terrestrial plants. Environ Microbiol. 2023 Sep;25(9):1713-1727. doi: 10.1111/1462-2920.16390. Epub 2023 Apr 30. |
2023 Sep | degradation | 18 | 7 | CE15, CBM9, CE20, CE20, GH10, GH115, GH115, GH43_1, GH67 |
| PUL0705 | fluorophore-assisted carbohydrate electrophoresis (FACE), dinitrosalicylic acid-assay (DNS-assay), HPLC, clone and expression | xylan | Flavimarina sp. Hel_I_48 | <a href=https://pubmed.ncbi.nlm.nih.gov/37121608/>37121608</a> Marine Bacteroidetes enzymatically digest xylans from terrestrial plants. Environ Microbiol. 2023 Sep;25(9):1713-1727. doi: 10.1111/1462-2920.16390. Epub 2023 Apr 30. |
2023 Sep | degradation | 14 | 8 | CE6, CE1, CE1, GH10, GH43_10, CBM91, GH43_12, CBM91, GH8, GH95, GH97 |
| PUL0722 | RNA-seq, mass spectrometry, SDS-PAGE, isothermal titration calorimetry (ITC), high-performance anion-exchange chromatography, enzyme kinetic analysis, thin-layer chromatography | xylan | Polaribacter sp. Q13 | <a href=https://pubmed.ncbi.nlm.nih.gov/38169280/>38169280</a> The catabolic specialization of the marine bacterium Polaribacter sp. Q13 to red algal beta1,3/1,4-mixed-linkage xylan. Appl Environ Microbiol. 2024 Jan 24;90(1):e0170423. doi: 10.1128/aem.01704-23. Epub 2024 Jan 3. |
2024 Jan 24 | degradation | 30 | 9 | CBM4, CBM4, GH10, GH26, GH3, GH43_1, GH43_12, CBM91 |
| PUL0743 | gene mutant, SDS-PAGE, Western Blot, recombinant protein expression, thermal shift assay (TSA), isothermal titration calorimetry (ITC), HPAEC-PAD, RT-qPCR, fluorescence measurements | xylan | Ruminiclostridium cellulolyticum H10 | <a href=https://pubmed.ncbi.nlm.nih.gov/36403068/>36403068</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/38789996/>38789996</a> Selfish uptake versus extracellular arabinoxylan degradation in the primary degrader Ruminiclostridium cellulolyticum, a new string to its bow. Intracellular removal of acetyl, feruloyl and p-coumaroyl decorations on arabinoxylo-oligosaccharides imported from lignocellulosic biomass degradation by Ruminiclostridium cellulolyticum. Biotechnol Biofuels Bioprod. 2022 Nov 19;15(1):127. doi: 10.1186/s13068-022-02225-8. Microb Cell Fact. 2024 May 24;23(1):151. doi: 10.1186/s12934-024-02423-z. |
2022 Nov 19,2024 May 24 | degradation | 13 | 6 | CE1, CE20, CE20, GH39, GH43_10, CBM91, GH51_1, GH8 |
| PUL0792 | enzyme activity assay, recombinant protein expression, RNA-seq | xylan | Bifidobacterium pseudocatenulatum strain YIT11952 | <a href=https://pubmed.ncbi.nlm.nih.gov/37938239/>37938239</a> Xylan utilisation promotes adaptation of Bifidobacterium pseudocatenulatum to the human gastrointestinal tract. ISME Commun. 2021 Oct 28;1(1):62. doi: 10.1038/s43705-021-00066-4. |
2021 Oct 28 | degradation | 15 | 5 | CE20, GH10, CBM9, GH120, GH43_11, CBM91, GH8 |
Copyright 2020 © YIN LAB, UNL. All rights reserved. Designed by Catie Ausland and Jinfang Zheng. Maintained by Yanbin Yin.