Browse dbCAN-PUL Entries

PULID Characterization Method(s) Substrate Organism Publication Publish Date Type Num Genes Num CAZymes CazyFamily
PUL0003 RT-PCR xylan Bacillus subtilis <a href=https://pubmed.ncbi.nlm.nih.gov/26559526/>26559526</a>
Metabolic potential of Bacillus subtilis 168 for the direct conversion of xylans to fermentation products. Appl Microbiol Biotechnol. 2016 Feb;100(3):1501-1510. doi: 10.1007/s00253-015-7124-x. Epub 2015 Nov 12.
2016 Feb degradation 2 2 GH30_8, GH43_16, CBM6
PUL0010 enzyme activity assay, liquid chromatography and mass spectrometry xylan Geobacillus thermodenitrificans <a href=https://pubmed.ncbi.nlm.nih.gov/28616644/>28616644</a>
Synergistic hydrolysis of xylan using novel xylanases, beta-xylosidases, and an alpha-L-arabinofuranosidase from Geobacillus thermodenitrificans NG80-2. Appl Microbiol Biotechnol. 2017 Aug;101(15):6023-6037. doi: 10.1007/s00253-017-8341-2. Epub 2017 Jun 14.
2017 Aug degradation 42 8 CE4, GH10, GH39, GH43_11, CBM91, GH51_1, GH52, GH67
PUL0078 enzyme activity assay xylan Caldicellulosiruptor sp. Rt8B.4 <a href=https://pubmed.ncbi.nlm.nih.gov/8920183/>8920183</a>
Cloning, sequencing and overexpression in Escherichia coli of a xylanase gene, xynA from the thermophilic bacterium Rt8B.4 genus Caldicellulosiruptor. Appl Microbiol Biotechnol. 1996 Mar;45(1-2):86-93. doi: 10.1007/s002530050653.
1996 Mar degradation 6 1 CBM22, CBM22, GH10
PUL0140 sequence homology analysis xylan Bifidobacterium animalis subsp. animalis <a href=https://pubmed.ncbi.nlm.nih.gov/30306201/>30306201</a>
Staying alive: growth and survival of Bifidobacterium animalis subsp. animalis under in vitro and in vivo conditions. Appl Microbiol Biotechnol. 2018 Dec;102(24):10645-10663. doi: 10.1007/s00253-018-9413-7. Epub 2018 Oct 10.
2018 Dec degradation 11 4 CE20, CE20, GH43_10, CBM91, GH43_11, CBM91, GH43_12
PUL0227 enzyme activity assay, substrate binding assay xylan Caldanaerobius polysaccharolyticus <a href=https://pubmed.ncbi.nlm.nih.gov/22918832/>22918832</a>
Biochemical and structural insights into xylan utilization by the thermophilic bacterium Caldanaerobius polysaccharolyticus. J Biol Chem. 2012 Oct 12;287(42):34946-34960. doi: 10.1074/jbc.M112.391532. Epub 2012 Aug 22.
2012 Oct 12 degradation 10 3 CE4, GH3, GH67
PUL0229 RT-PCR xylan Paenibacillus sp. JDR-2 <a href=https://pubmed.ncbi.nlm.nih.gov/17921311/>17921311</a>
Structure, function, and regulation of the aldouronate utilization gene cluster from Paenibacillus sp. strain JDR-2. J Bacteriol. 2007 Dec;189(24):8863-70. doi: 10.1128/JB.01141-07. Epub 2007 Oct 5.
2007 Dec degradation 8 3 GH10, GH43_12, CBM91, GH67
PUL0262 RNA-seq xylan Bacteroides cellulosilyticus <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>
Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20.
2013 degradation 12 6 CE1, CE6, GH95, GH10, GH5_21, GH8
PUL0263 RNA-seq xylan Bacteroides cellulosilyticus <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/30674645/>30674645</a>
Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. Wood-Derived Dietary Fibers Promote Beneficial Human Gut Microbiota. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20. mSphere. 2019 Jan 23;4(1):e00554-18. doi: 10.1128/mSphere.00554-18.
2013,2019 Jan 23 degradation 5 1 GH10
PUL0274 RT-qPCR xylan Bifidobacterium animalis subsp. lactis <a href=https://pubmed.ncbi.nlm.nih.gov/23663691/>23663691</a>
Transcriptional analysis of oligosaccharide utilization by Bifidobacterium lactis Bl-04. BMC Genomics. 2013 May 10;14:312. doi: 10.1186/1471-2164-14-312.
2013 May 10 degradation 12 4 CE20, CE20, GH43_10, CBM91, GH43_11, CBM91, GH43_12
PUL0289 enzyme activity assay xylan Flavobacterium johnsoniae <a href=https://pubmed.ncbi.nlm.nih.gov/29588659/>29588659</a>
A novel acetyl xylan esterase enabling complete deacetylation of substituted xylans. Biotechnol Biofuels. 2018 Mar 22;11:74. doi: 10.1186/s13068-018-1074-3. eCollection 2018.
2018 degradation 12 7 CE6, CE1, GH115, GH146, GH3, GH43_10, CBM91, GH43_12, CBM91, GH97
PUL0294 gene trait matching exercise xylan Bifidobacterium longum <a href=https://pubmed.ncbi.nlm.nih.gov/29310579/>29310579</a>
Gene-trait matching across the Bifidobacterium longum pan-genome reveals considerable diversity in carbohydrate catabolism among human infant strains. BMC Genomics. 2018 Jan 8;19(1):33. doi: 10.1186/s12864-017-4388-9.
2018 Jan 8 degradation 12 3 GH120, GH43_11, CBM91, GH43_12
PUL0328 microarray, gas chromatography, mass spectrometry xylan Gramella flava <a href=https://pubmed.ncbi.nlm.nih.gov/28261179/>28261179</a>
Characterization of Potential Polysaccharide Utilization Systems in the Marine Bacteroidetes Gramella Flava JLT2011 Using a Multi-Omics Approach. Front Microbiol. 2017 Feb 14;8:220. doi: 10.3389/fmicb.2017.00220. eCollection 2017.
2017 degradation 10 5 GH127, GH2, GH43, GH43_26, GH5_13
PUL0329 microarray, gas chromatography, mass spectrometry xylan Gramella flava <a href=https://pubmed.ncbi.nlm.nih.gov/28261179/>28261179</a>
Characterization of Potential Polysaccharide Utilization Systems in the Marine Bacteroidetes Gramella Flava JLT2011 Using a Multi-Omics Approach. Front Microbiol. 2017 Feb 14;8:220. doi: 10.3389/fmicb.2017.00220. eCollection 2017.
2017 degradation 25 9 CE15, CE20, CE20, GH10, GH115, GH3, GH43_1, GH43_10, CBM91, GH43_12, CBM91, GH67
PUL0335 fosmid library screen, enzyme activity assay, thin-layer chromatography xylan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/28091525/>28091525</a>
A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic. Sci Rep. 2017 Jan 16;7:40248. doi: 10.1038/srep40248.
2017 Jan 16 degradation 31 5 GH13_46, GH158, GH16_3, GH3, GH97
PUL0336 fosmid library screen, enzyme activity assay, thin-layer chromatography xylan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/28091525/>28091525</a>
A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic. Sci Rep. 2017 Jan 16;7:40248. doi: 10.1038/srep40248.
2017 Jan 16 degradation 25 4 GH158, GH16_3, GH3, GT2
PUL0337 fosmid library screen, enzyme activity assay, thin-layer chromatography xylan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/28091525/>28091525</a>
A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic. Sci Rep. 2017 Jan 16;7:40248. doi: 10.1038/srep40248.
2017 Jan 16 degradation 29 4 GH158, GH16_3, GH3, GT2
PUL0338 fosmid library screen, enzyme activity assay, thin-layer chromatography xylan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/28091525/>28091525</a>
A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic. Sci Rep. 2017 Jan 16;7:40248. doi: 10.1038/srep40248.
2017 Jan 16 degradation 34 5 GH158, GH16_3, GH3, GH97, GT2
PUL0339 fosmid library screen, enzyme activity assay, thin-layer chromatography xylan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/28091525/>28091525</a>
A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic. Sci Rep. 2017 Jan 16;7:40248. doi: 10.1038/srep40248.
2017 Jan 16 degradation 24 4 GH16_3, GH20, GH3, GH97
PUL0342 enzyme activity assay, gene deletion mutant and growth assay xylan Prevotella ruminicola <a href=https://pubmed.ncbi.nlm.nih.gov/19304844/>19304844</a>
Biochemical analysis of a beta-D-xylosidase and a bifunctional xylanase-ferulic acid esterase from a xylanolytic gene cluster in Prevotella ruminicola 23. J Bacteriol. 2009 May;191(10):3328-38. doi: 10.1128/JB.01628-08. Epub 2009 Mar 20.
2009 May degradation 5 3 GH10, CE1, GH3, GH95
PUL0345 qRT-PCR, enzyme activity assay xylan Bacteroides intestinalis <a href=https://pubmed.ncbi.nlm.nih.gov/27681607/>27681607</a>
Bacteroides intestinalis DSM 17393, a member of the human colonic microbiome, upregulates multiple endoxylanases during growth on xylan. Sci Rep. 2016 Sep 29;6:34360. doi: 10.1038/srep34360.
2016 Sep 29 degradation 31 13 CE1, CE20, CE20, CE6, GH95, GH10, GH10, GH43_12, CBM91, GH115, GH35, GH43_1, GH5_21, GH67, GH8
PUL0346 gene deletion mutant and growth assay xylan uncultured bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/24066026/>24066026</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/27573446/>27573446</a>
Functional metagenomics reveals novel pathways of prebiotic breakdown by human gut bacteria. Functional characterization of a gene locus from an uncultured gut Bacteroides conferring xylo-oligosaccharides utilization to Escherichia coli. PLoS One. 2013 Sep 16;8(9):e72766. doi: 10.1371/journal.pone.0072766. eCollection 2013. Mol Microbiol. 2016 Nov;102(4):579-592. doi: 10.1111/mmi.13480. Epub 2016 Sep 14.
2013,2016 Nov degradation 13 5 GH10, GH16_3, GH43_1, GH43_12, CBM91, GH43_29
PUL0364 enzyme activity assay xylan Xanthomonas campestris pv. campestris <a href=https://pubmed.ncbi.nlm.nih.gov/17311090/>17311090</a>
Plant carbohydrate scavenging through tonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS One. 2007 Feb 21;2(2):e224. doi: 10.1371/journal.pone.0000224.
2007 Feb 21 degradation 8 4 GH10, GH2, GH43_1
PUL0390 enzyme activity assay xylan Thermotoga maritima <a href=https://pubmed.ncbi.nlm.nih.gov/21255309/>21255309</a>
Hyperthermostable acetyl xylan esterase. Microb Biotechnol. 2010 Jan;3(1):84-92. doi: 10.1111/j.1751-7915.2009.00150.x. Epub 2009 Sep 18.
2010 Jan degradation 24 6 CBM22, CBM22, CBM22, GH10, CBM9, CBM9, CE7, GH10, GH3, GH67
PUL0392 RT-PCR, qPCR xylan Bacteroides xylanisolvens <a href=https://pubmed.ncbi.nlm.nih.gov/27142817/>27142817</a>
Xylan degradation by the human gut Bacteroides xylanisolvens XB1A(T) involves two distinct gene clusters that are linked at the transcriptional level. BMC Genomics. 2016 May 4;17:326. doi: 10.1186/s12864-016-2680-8.
2016 May 4 degradation 8 3 CE20, CE20, GH13_14, GH67
PUL0402 Northern Blot, enzyme activity assay xylan Lactococcus lactis subsp. lactis IO-1 <a href=https://pubmed.ncbi.nlm.nih.gov/11282589/>11282589</a>
Genetic evidence for a defective xylan degradation pathway in Lactococcus lactis. Appl Environ Microbiol. 2001 Apr;67(4):1445-52. doi: 10.1128/AEM.67.4.1445-1452.2001.
2001 Apr degradation 6 1 GH43_11, CBM91
PUL0411 enzyme activity assay xylan Prevotella bryantii <a href=https://pubmed.ncbi.nlm.nih.gov/7487028/>7487028</a>
A xylan hydrolase gene cluster in Prevotella ruminicola B(1)4: sequence relationships, synergistic interactions, and oxygen sensitivity of a novel enzyme with exoxylanase and beta-(1,4)-xylosidase activities. Appl Environ Microbiol. 1995 Aug;61(8):2958-64. doi: 10.1128/aem.61.8.2958-2964.1995.
1995 Aug degradation 2 2 GH10, GH43_1
PUL0414 enzyme activity assay, thin-layer chromatography xylan uncultured bacterium 35A20 <a href=https://pubmed.ncbi.nlm.nih.gov/30116044/>30116044</a>
Functional metagenomics reveals abundant polysaccharide-degrading gene clusters and cellobiose utilization pathways within gut microbiota of a wood-feeding higher termite. ISME J. 2019 Jan;13(1):104-117. doi: 10.1038/s41396-018-0255-1. Epub 2018 Aug 16.
2019 Jan degradation 25 4 GH1, GH10
PUL0415 microarray xylan Bacteroides ovatus <a href=https://pubmed.ncbi.nlm.nih.gov/22205877/>22205877</a>
Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 2011 Dec;9(12):e1001221. doi: 10.1371/journal.pbio.1001221. Epub 2011 Dec 20.
2011 Dec degradation 4 2 GH20, GH20, CBM32
PUL0456 microarray, RNA-seq xylan Prevotella bryantii <a href=https://pubmed.ncbi.nlm.nih.gov/20622018/>20622018</a>
Transcriptomic analyses of xylan degradation by Prevotella bryantii and insights into energy acquisition by xylanolytic bacteroidetes. J Biol Chem. 2010 Sep 24;285(39):30261-73. doi: 10.1074/jbc.M110.141788. Epub 2010 Jul 9.
2010 Sep 24 degradation 12 4 GH43_10, GH43_1, GH67, GH10
PUL0457 high-performance anion-exchange chromatography, enzyme activity assay, RNA-seq xylan Lactobacillus rossiae <a href=https://pubmed.ncbi.nlm.nih.gov/27142164/>27142164</a>
Cloning, expression and characterization of a beta-D-xylosidase from Lactobacillus rossiae DSM 15814(T). Microb Cell Fact. 2016 May 3;15:72. doi: 10.1186/s12934-016-0473-z.
2016 May 3 degradation 7 1 GH43_11, CBM91
PUL0474 growth assay xylan Flavobacterium johnsoniae <a href=https://pubmed.ncbi.nlm.nih.gov/19717629/>19717629</a>
Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl Environ Microbiol. 2009 Nov;75(21):6864-75. doi: 10.1128/AEM.01495-09. Epub 2009 Aug 28.
2009 Nov degradation 9 5 GH3, GH30_1, GH30_3
PUL0480 growth assay xylan Flavobacterium johnsoniae <a href=https://pubmed.ncbi.nlm.nih.gov/19717629/>19717629</a>
Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl Environ Microbiol. 2009 Nov;75(21):6864-75. doi: 10.1128/AEM.01495-09. Epub 2009 Aug 28.
2009 Nov degradation 9 4 GH10, GH16, GH3, GH8
PUL0508 clone and expression, enzyme activity assay xylan Streptomyces thermoviolaceus <a href=https://pubmed.ncbi.nlm.nih.gov/14761997/>14761997</a>
Molecular characterization of a high-affinity xylobiose transporter of Streptomyces thermoviolaceus OPC-520 and its transcriptional regulation. J Bacteriol. 2004 Feb;186(4):1029-37. doi: 10.1128/JB.186.4.1029-1037.2004.
2004 Feb degradation 5 1 GH3
PUL0520 clone and expression, enzyme activity assay xylan Klebsiella oxytoca <a href=https://pubmed.ncbi.nlm.nih.gov/14532050/>14532050</a>
Cloning, characterization, and functional expression of the Klebsiella oxytoca xylodextrin utilization operon (xynTB) in Escherichia coli. Appl Environ Microbiol. 2003 Oct;69(10):5957-67. doi: 10.1128/AEM.69.10.5957-5967.2003.
2003 Oct degradation 2 1 GH43_11, CBM91
PUL0533 RNA-seq xylan Bacteroides cellulosilyticus <a href=https://pubmed.ncbi.nlm.nih.gov/23976882/>23976882</a>
Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20.
2013 degradation 9 3 GH10, GH115, GH30_8
PUL0542 binding assay xylan Geobacillus stearothermophilus <a href=https://pubmed.ncbi.nlm.nih.gov/10368143/>10368143</a>
The glucuronic acid utilization gene cluster from Bacillus stearothermophilus T-6. J Bacteriol. 1999 Jun;181(12):3695-704. doi: 10.1128/JB.181.12.3695-3704.1999.
1999 Jun degradation 29 7 CE4, GH10, GH39, GH43_11, CBM91, GH52, GH67
PUL0553 RT-PCR, qPCR xylan Bacteroides xylanisolvens <a href=https://pubmed.ncbi.nlm.nih.gov/27142817/>27142817</a>
Xylan degradation by the human gut Bacteroides xylanisolvens XB1A(T) involves two distinct gene clusters that are linked at the transcriptional level. BMC Genomics. 2016 May 4;17:326. doi: 10.1186/s12864-016-2680-8.
2016 May 4 degradation 22 13 CE6, CE1, GH10, GH115, GH3, GH31_4, GH43_10, CBM91, GH43_12, CBM91, GH43_29, CBM6, GH5_21, GH95, GH97
PUL0592 qRT-PCR xylan Paenibacillus sp. JDR-2 <a href=https://pubmed.ncbi.nlm.nih.gov/25063665/>25063665</a>
GH51 arabinofuranosidase and its role in the methylglucuronoarabinoxylan utilization system in Paenibacillus sp. strain JDR-2. Appl Environ Microbiol. 2014 Oct;80(19):6114-25. doi: 10.1128/AEM.01684-14. Epub 2014 Jul 25.
2014 Oct degradation 8 3 GH10, GH43_12, CBM91, GH67
PUL0594 qRT-PCR xylan Paenibacillus sp. JDR-2 <a href=https://pubmed.ncbi.nlm.nih.gov/25063665/>25063665</a>
GH51 arabinofuranosidase and its role in the methylglucuronoarabinoxylan utilization system in Paenibacillus sp. strain JDR-2. Appl Environ Microbiol. 2014 Oct;80(19):6114-25. doi: 10.1128/AEM.01684-14. Epub 2014 Jul 25.
2014 Oct degradation 5 1 GH51_1
PUL0598 liquid chromatography and mass spectrometry, differential gene expression xylan Clostridium cellulovorans 743B <a href=https://pubmed.ncbi.nlm.nih.gov/26020016/>26020016</a>
Elucidation of the recognition mechanisms for hemicellulose and pectin in Clostridium cellulovorans using intracellular quantitative proteome analysis. AMB Express. 2015 May 23;5:29. doi: 10.1186/s13568-015-0115-6. eCollection 2015.
2015 degradation 4 1 GH95
PUL0599 liquid chromatography and mass spectrometry, differential gene expression xylan Clostridium cellulovorans <a href=https://pubmed.ncbi.nlm.nih.gov/26020016/>26020016</a>
Elucidation of the recognition mechanisms for hemicellulose and pectin in Clostridium cellulovorans using intracellular quantitative proteome analysis. AMB Express. 2015 May 23;5:29. doi: 10.1186/s13568-015-0115-6. eCollection 2015.
2015 degradation 7 1 GH43_11, CBM91
PUL0602 sequence homology analysis xylan Parageobacillus thermoglucosidasius <a href=https://pubmed.ncbi.nlm.nih.gov/26442136/>26442136</a>
Complete genome sequence of Geobacillus thermoglucosidasius C56-YS93, a novel biomass degrader isolated from obsidian hot spring in Yellowstone National Park. Stand Genomic Sci. 2015 Oct 5;10:73. doi: 10.1186/s40793-015-0031-z. eCollection 2015.
2015 degradation 26 6 CE4, GH10, GH39, GH52, GH67
PUL0610 enzyme activity assay, strcutural analysis xylan Rhodothermus marinus <a href=https://pubmed.ncbi.nlm.nih.gov/31992772/>31992772</a>
Characterization and diversity of the complete set of GH family 3 enzymes from Rhodothermus marinus DSM 4253. Sci Rep. 2020 Jan 28;10(1):1329. doi: 10.1038/s41598-020-58015-5.
2020 Jan 28 degradation 15 6 CBM4, CBM4, GH10, GH10, GH3, GH43_15, CBM91, CBM6, GH67
PUL0617 RNA-seq xylan Prevotella sp. PINT <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a>
Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27.
2020 Dec 9 degradation 14 6 GH10, GH43_1, GH43_35, GH5_21, GH67
PUL0619 RNA-seq xylan Prevotella sp. PROD <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a>
Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27.
2020 Dec 9 degradation 5 1 GH35
PUL0620 RNA-seq xylan Prevotella sp. PROD <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a>
Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27.
2020 Dec 9 degradation 10 2 GH128, GH51_2, GH43_19
PUL0622 RNA-seq xylan Prevotella sp. PROD <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a>
Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27.
2020 Dec 9 degradation 15 6 CE2, GH2, GH3, GH43_7, GH43_7, PL11_1
PUL0624 RNA-seq xylan Prevotella sp. PMUR <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a>
Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27.
2020 Dec 9 degradation 11 3 GH128, GH43_24, GH51_2, GH43_19
PUL0625 RNA-seq xylan Prevotella sp. PMUR <a href=https://pubmed.ncbi.nlm.nih.gov/33113351/>33113351</a>
Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe. 2020 Dec 9;28(6):838-852.e6. doi: 10.1016/j.chom.2020.09.012. Epub 2020 Oct 27.
2020 Dec 9 degradation 18 10 CE1, CE1, CE1, GH115, GH30_8, GH43_10, CBM91, GH43_12, CBM91, GH43_29, CBM6, GH95, GH97
PUL0630 enzyme activity assay, affinity gel electrophoresis xylan termite gut metagenome <a href=https://pubmed.ncbi.nlm.nih.gov/33187992/>33187992</a>
Multimodularity of a GH10 Xylanase Found in the Termite Gut Metagenome. Appl Environ Microbiol. 2021 Jan 15;87(3):e01714-20. doi: 10.1128/AEM.01714-20. Print 2021 Jan 15.
2021 Jan 15 degradation 9 5 CE20, CE20, GH11, GH10, GH115, GH43_1
PUL0648 high-performance anion-exchange chromatography, substrate binding assay, thin-layer chromatography, NMR, mass spectrometry, crystallization xylan Dysgonomonas mossii DSM 22836 <a href=https://pubmed.ncbi.nlm.nih.gov/33667545/>33667545</a>
A polysaccharide utilization locus from the gut bacterium Dysgonomonas mossii encodes functionally distinct carbohydrate esterases. J Biol Chem. 2021 Jan-Jun;296:100500. doi: 10.1016/j.jbc.2021.100500. Epub 2021 Mar 2.
2021 Jan-Jun degradation 37 21 CE1, CE1, CE1, CE20, CE20, CE6, GH10, GH115, GH146, GH31_4, GH43_1, GH43_10, CBM91, GH43_12, CBM91, GH43_29, GH43_29, CBM6, GH51_2, GH67, GH8, GH97
PUL0669 clone, high-performance anion-exchange chromatography, enzymatic product analysis xylan Bacteroides eggerthii 1_2_48FAA <a href=https://pubmed.ncbi.nlm.nih.gov/34480044/>34480044</a>
Characterization of a novel multidomain CE15-GH8 enzyme encoded by a polysaccharide utilization locus in the human gut bacterium Bacteroides eggerthii. Sci Rep. 2021 Sep 3;11(1):17662. doi: 10.1038/s41598-021-96659-z.
2021 Sep 3 degradation 26 15 CE1, CE15, GH8, CE20, CE20, CE6, GH10, GH115, GH31_4, GH35, GH43_1, GH43_10, CBM91, GH43_12, CBM91, GH5_21, GH67, GH95, GH97
PUL0682 enzyme activity assay, affinity gel electrophoresis xylan Bacteroidaceae bacterium <a href=https://pubmed.ncbi.nlm.nih.gov/35110564/>35110564</a>
Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides. Nat Commun. 2022 Feb 2;13(1):629. doi: 10.1038/s41467-022-28310-y.
2022 Feb 2 degradation 3 3 CBM89, GH10, GH43_12, CBM91, GH97
PUL0694 recombinant protein expression, SDS-PAGE, HPLC xylan Caldicellulosiruptor bescii DSM 6725 <a href=https://pubmed.ncbi.nlm.nih.gov/36218355/>36218355</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/34060910/>34060910</a>
Biochemical and Regulatory Analyses of Xylanolytic Regulons in Caldicellulosiruptor bescii Reveal Genus-Wide Features of Hemicellulose Utilization. Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile Caldicellulosiruptor bescii. Appl Environ Microbiol. 2022 Nov 8;88(21):e0130222. doi: 10.1128/aem.01302-22. Epub 2022 Oct 11. mSystems. 2021 Jun 29;6(3):e0134520. doi: 10.1128/mSystems.01345-20. Epub 2021 Jun 1.
2022 Nov 8,2021 Jun 29 degradation 14 6 CBM22, CBM22, GH10, CE1, GH10, GH39, GH43_10, CBM22, CBM91, GH43_16, CBM6
PUL0695 recombinant protein expression, SDS-PAGE, HPLC xylan Caldicellulosiruptor bescii DSM 6725 <a href=https://pubmed.ncbi.nlm.nih.gov/36218355/>36218355</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/34060910/>34060910</a>
Biochemical and Regulatory Analyses of Xylanolytic Regulons in Caldicellulosiruptor bescii Reveal Genus-Wide Features of Hemicellulose Utilization. Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile Caldicellulosiruptor bescii. Appl Environ Microbiol. 2022 Nov 8;88(21):e0130222. doi: 10.1128/aem.01302-22. Epub 2022 Oct 11. mSystems. 2021 Jun 29;6(3):e0134520. doi: 10.1128/mSystems.01345-20. Epub 2021 Jun 1.
2022 Nov 8,2021 Jun 29 degradation 5 1 CBM22, CBM22, GH10
PUL0696 recombinant protein expression, SDS-PAGE, HPLC xylan Caldicellulosiruptor bescii DSM 6725 <a href=https://pubmed.ncbi.nlm.nih.gov/36218355/>36218355</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/34060910/>34060910</a>
Biochemical and Regulatory Analyses of Xylanolytic Regulons in Caldicellulosiruptor bescii Reveal Genus-Wide Features of Hemicellulose Utilization. Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile Caldicellulosiruptor bescii. Appl Environ Microbiol. 2022 Nov 8;88(21):e0130222. doi: 10.1128/aem.01302-22. Epub 2022 Oct 11. mSystems. 2021 Jun 29;6(3):e0134520. doi: 10.1128/mSystems.01345-20. Epub 2021 Jun 1.
2022 Nov 8,2021 Jun 29 degradation 11 2 GH2, GH67
PUL0697 recombinant protein expression, SDS-PAGE, HPLC xylan Caldicellulosiruptor bescii DSM 6725 <a href=https://pubmed.ncbi.nlm.nih.gov/36218355/>36218355</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/34060910/>34060910</a>
Biochemical and Regulatory Analyses of Xylanolytic Regulons in Caldicellulosiruptor bescii Reveal Genus-Wide Features of Hemicellulose Utilization. Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile Caldicellulosiruptor bescii. Appl Environ Microbiol. 2022 Nov 8;88(21):e0130222. doi: 10.1128/aem.01302-22. Epub 2022 Oct 11. mSystems. 2021 Jun 29;6(3):e0134520. doi: 10.1128/mSystems.01345-20. Epub 2021 Jun 1.
2022 Nov 8,2021 Jun 29 degradation 3 3 CE20, CE20, CE4, GH10
PUL0704 fluorophore-assisted carbohydrate electrophoresis (FACE), dinitrosalicylic acid-assay (DNS-assay), HPLC, clone and expression xylan Flavimarina sp. Hel_I_48 <a href=https://pubmed.ncbi.nlm.nih.gov/37121608/>37121608</a>
Marine Bacteroidetes enzymatically digest xylans from terrestrial plants. Environ Microbiol. 2023 Sep;25(9):1713-1727. doi: 10.1111/1462-2920.16390. Epub 2023 Apr 30.
2023 Sep degradation 18 7 CE15, CBM9, CE20, CE20, GH10, GH115, GH115, GH43_1, GH67
PUL0705 fluorophore-assisted carbohydrate electrophoresis (FACE), dinitrosalicylic acid-assay (DNS-assay), HPLC, clone and expression xylan Flavimarina sp. Hel_I_48 <a href=https://pubmed.ncbi.nlm.nih.gov/37121608/>37121608</a>
Marine Bacteroidetes enzymatically digest xylans from terrestrial plants. Environ Microbiol. 2023 Sep;25(9):1713-1727. doi: 10.1111/1462-2920.16390. Epub 2023 Apr 30.
2023 Sep degradation 14 8 CE6, CE1, CE1, GH10, GH43_10, CBM91, GH43_12, CBM91, GH8, GH95, GH97
PUL0722 RNA-seq, mass spectrometry, SDS-PAGE, isothermal titration calorimetry (ITC), high-performance anion-exchange chromatography, enzyme kinetic analysis, thin-layer chromatography xylan Polaribacter sp. Q13 <a href=https://pubmed.ncbi.nlm.nih.gov/38169280/>38169280</a>
The catabolic specialization of the marine bacterium Polaribacter sp. Q13 to red algal beta1,3/1,4-mixed-linkage xylan. Appl Environ Microbiol. 2024 Jan 24;90(1):e0170423. doi: 10.1128/aem.01704-23. Epub 2024 Jan 3.
2024 Jan 24 degradation 30 9 CBM4, CBM4, GH10, GH26, GH3, GH43_1, GH43_12, CBM91
PUL0743 gene mutant, SDS-PAGE, Western Blot, recombinant protein expression, thermal shift assay (TSA), isothermal titration calorimetry (ITC), HPAEC-PAD, RT-qPCR, fluorescence measurements xylan Ruminiclostridium cellulolyticum H10 <a href=https://pubmed.ncbi.nlm.nih.gov/36403068/>36403068</a>, <a href=https://pubmed.ncbi.nlm.nih.gov/38789996/>38789996</a>
Selfish uptake versus extracellular arabinoxylan degradation in the primary degrader Ruminiclostridium cellulolyticum, a new string to its bow. Intracellular removal of acetyl, feruloyl and p-coumaroyl decorations on arabinoxylo-oligosaccharides imported from lignocellulosic biomass degradation by Ruminiclostridium cellulolyticum. Biotechnol Biofuels Bioprod. 2022 Nov 19;15(1):127. doi: 10.1186/s13068-022-02225-8. Microb Cell Fact. 2024 May 24;23(1):151. doi: 10.1186/s12934-024-02423-z.
2022 Nov 19,2024 May 24 degradation 13 6 CE1, CE20, CE20, GH39, GH43_10, CBM91, GH51_1, GH8
PUL0792 enzyme activity assay, recombinant protein expression, RNA-seq xylan Bifidobacterium pseudocatenulatum strain YIT11952 <a href=https://pubmed.ncbi.nlm.nih.gov/37938239/>37938239</a>
Xylan utilisation promotes adaptation of Bifidobacterium pseudocatenulatum to the human gastrointestinal tract. ISME Commun. 2021 Oct 28;1(1):62. doi: 10.1038/s43705-021-00066-4.
2021 Oct 28 degradation 15 5 CE20, GH10, CBM9, GH120, GH43_11, CBM91, GH8