logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000004788_01022

You are here: Home > Sequence: MGYG000004788_01022

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Companilactobacillus farciminis
Lineage Bacteria; Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae; Companilactobacillus; Companilactobacillus farciminis
CAZyme ID MGYG000004788_01022
CAZy Family GH4
CAZyme Description putative 6-phospho-beta-glucosidase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
466 MGYG000004788_15|CGC1 52443.32 6.0321
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000004788 2403188 MAG China Asia
Gene Location Start: 18580;  End: 19980  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

EC 3.2.1.86

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH4 7 181 1.7e-72 0.9608938547486033

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd05296 GH4_P_beta_glucosidase 0.0 6 434 1 419
Glycoside Hydrolases Family 4; Phospho-beta-glucosidase. Some bacteria simultaneously translocate and phosphorylate disaccharides via the phosphoenolpyruvate-dependent phosphotransferase system (PEP-PTS). After translocation, these phospho-disaccharides may be hydrolyzed by the GH4 glycoside hydrolases such as the phospho-beta-glucosidases. Other organisms (such as archaea and Thermotoga maritima ) lack the PEP-PTS system, but have several enzymes normally associated with the PEP-PTS operon. The 6-phospho-beta-glucosidase from Thermotoga maritima hydrolylzes cellobiose 6-phosphate (6P) into glucose-6P and glucose, in an NAD+ and Mn2+ dependent fashion. The Escherichia coli 6-phospho-beta-glucosidase (also called celF) hydrolyzes a variety of phospho-beta-glucosides including cellobiose-6P, salicin-6P, arbutin-6P, and gentobiose-6P. Phospho-beta-glucosidases are part of the NAD(P)-binding Rossmann fold superfamily, which includes a wide variety of protein families including the NAD(P)-binding domains of alcohol dehydrogenases, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate dehydrogenases, formate/glycerate dehydrogenases, siroheme synthases, 6-phosphogluconate dehydrogenases, aminoacid dehydrogenases, repressor rex, and NAD-binding potassium channel domains, among others.
COG1486 CelF 2.05e-174 5 440 3 442
Alpha-galactosidase/6-phospho-beta-glucosidase, family 4 of glycosyl hydrolase [Carbohydrate transport and metabolism].
cd05197 GH4_glycoside_hydrolases 1.49e-130 6 429 1 425
Glycoside Hydrases Family 4. Glycoside hydrolases cleave glycosidic bonds to release smaller sugars from oligo- or polysaccharides. Some bacteria simultaneously translocate and phosphorylate disaccharides via the phosphoenolpyruvate-dependent phosphotransferase system (PEP-PTS). After translocation, these phospho-disaccharides may be hydrolyzed by GH4 glycoside hydrolases. Other organisms (such as archaea and Thermotoga maritima) lack the PEP-PTS system, but have several enzymes normally associated with the PEP-PTS operon. GH4 family members include 6-phospho-beta-glucosidases, 6-phospho-alpha-glucosidases, alpha-glucosidases/alpha-glucuronidases (only from Thermotoga), and alpha-galactosidases. They require two cofactors, NAD+ and a divalent metal (Mn2+, Ni2+, Mg2+), for activity. Some also require reducing conditions. GH4 glycoside hydrolases are part of the NAD(P)-binding Rossmann fold superfamily, which includes a wide variety of protein families including the NAD(P)-binding domains of alcohol dehydrogenases, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate dehydrogenases, formate/glycerate dehydrogenases, siroheme synthases, 6-phosphogluconate dehydrogenases, aminoacid dehydrogenases, repressor rex, and NAD-binding potassium channel domains, among others.
cd05298 GH4_GlvA_pagL_like 2.53e-91 7 437 2 436
Glycoside Hydrolases Family 4; GlvA- and pagL-like glycosidases. Bacillus subtilis GlvA and Clostridium acetobutylicum pagL are 6-phospho-alpha-glucosidase, catalyzing the hydrolysis of alpha-glucopyranoside bonds to release glucose from oligosaccharides. The substrate specificities of other members of this subgroup are unknown. Some bacteria simultaneously translocate and phosphorylate disaccharides via the phosphoenolpyruvate-dependent phosphotransferase system (PEP_PTS). After translocation, these phospho-disaccharides may be hydrolyzed by the GH4 glycoside hydrolases, which include 6-phospho-beta-glucosidases, 6-phospho-alpha-glucosidases, alpha-glucosidases/alpha-glucuronidases (only from Thermotoga), and alpha-galactosidases. Members of this subfamily are part of the NAD(P)-binding Rossmann fold superfamily, which includes a wide variety of protein families including the NAD(P)-binding domains of alcohol dehydrogenases, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate dehydrogenases, formate/glycerate dehydrogenases, siroheme synthases, 6-phosphogluconate dehydrogenases, aminoacid dehydrogenases, repressor rex, and NAD-binding potassium channel domains, among others.
pfam02056 Glyco_hydro_4 4.49e-71 7 181 1 175
Family 4 glycosyl hydrolase.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
ATO45680.1 0.0 1 466 1 466
QCX23955.1 0.0 1 465 1 465
AKS51531.1 0.0 1 466 1 466
AKP03231.1 0.0 1 466 1 466
QMT83304.1 0.0 1 466 1 466

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
5C3M_A 3.18e-163 6 446 5 446
Crystalstructure of Gan4C, a GH4 6-phospho-glucosidase from Geobacillus stearothermophilus [Geobacillus stearothermophilus],5C3M_B Crystal structure of Gan4C, a GH4 6-phospho-glucosidase from Geobacillus stearothermophilus [Geobacillus stearothermophilus],5C3M_C Crystal structure of Gan4C, a GH4 6-phospho-glucosidase from Geobacillus stearothermophilus [Geobacillus stearothermophilus],5C3M_D Crystal structure of Gan4C, a GH4 6-phospho-glucosidase from Geobacillus stearothermophilus [Geobacillus stearothermophilus]
1S6Y_A 1.86e-155 6 446 8 449
2.3Acrystal structure of phospho-beta-glucosidase [Geobacillus stearothermophilus]
1UP7_A 1.56e-68 6 434 3 414
Structureof the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8],1UP7_B Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8],1UP7_C Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8],1UP7_D Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8],1UP7_E Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8],1UP7_F Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8],1UP7_G Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8],1UP7_H Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8]
1UP4_A 6.20e-67 7 434 2 412
Structureof the 6-phospho-beta glucosidase from Thermotoga maritima at 2.85 Angstrom resolution in the monoclinic form [Thermotoga maritima MSB8],1UP4_B Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.85 Angstrom resolution in the monoclinic form [Thermotoga maritima MSB8],1UP4_C Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.85 Angstrom resolution in the monoclinic form [Thermotoga maritima MSB8],1UP4_D Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.85 Angstrom resolution in the monoclinic form [Thermotoga maritima MSB8],1UP4_E Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.85 Angstrom resolution in the monoclinic form [Thermotoga maritima MSB8],1UP4_F Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.85 Angstrom resolution in the monoclinic form [Thermotoga maritima MSB8],1UP4_G Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.85 Angstrom resolution in the monoclinic form [Thermotoga maritima MSB8],1UP4_H Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.85 Angstrom resolution in the monoclinic form [Thermotoga maritima MSB8]
1UP6_A 6.36e-67 7 434 3 413
Structureof the 6-phospho-beta glucosidase from Thermotoga maritima at 2.55 Angstrom resolution in the tetragonal form with manganese, NAD+ and glucose-6-phosphate [Thermotoga maritima MSB8],1UP6_B Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.55 Angstrom resolution in the tetragonal form with manganese, NAD+ and glucose-6-phosphate [Thermotoga maritima MSB8],1UP6_C Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.55 Angstrom resolution in the tetragonal form with manganese, NAD+ and glucose-6-phosphate [Thermotoga maritima MSB8],1UP6_D Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.55 Angstrom resolution in the tetragonal form with manganese, NAD+ and glucose-6-phosphate [Thermotoga maritima MSB8],1UP6_E Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.55 Angstrom resolution in the tetragonal form with manganese, NAD+ and glucose-6-phosphate [Thermotoga maritima MSB8],1UP6_F Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.55 Angstrom resolution in the tetragonal form with manganese, NAD+ and glucose-6-phosphate [Thermotoga maritima MSB8],1UP6_G Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.55 Angstrom resolution in the tetragonal form with manganese, NAD+ and glucose-6-phosphate [Thermotoga maritima MSB8],1UP6_H Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.55 Angstrom resolution in the tetragonal form with manganese, NAD+ and glucose-6-phosphate [Thermotoga maritima MSB8]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P46320 7.27e-168 6 442 5 441
Probable 6-phospho-beta-glucosidase OS=Bacillus subtilis (strain 168) OX=224308 GN=licH PE=2 SV=1
P17411 2.42e-132 6 445 5 447
6-phospho-beta-glucosidase OS=Escherichia coli (strain K12) OX=83333 GN=chbF PE=1 SV=4
Q9X108 8.08e-68 6 434 1 412
6-phospho-beta-glucosidase BglT OS=Thermotoga maritima (strain ATCC 43589 / DSM 3109 / JCM 10099 / NBRC 100826 / MSB8) OX=243274 GN=bglT PE=1 SV=1
Q97DP6 7.27e-53 11 433 9 440
Phospho-alpha-glucosidase PagL OS=Clostridium acetobutylicum (strain ATCC 824 / DSM 792 / JCM 1419 / LMG 5710 / VKM B-1787) OX=272562 GN=pagL PE=1 SV=1
Q03C44 3.92e-48 1 436 1 440
6-phospho-alpha-glucosidase 1 OS=Lacticaseibacillus paracasei (strain ATCC 334 / BCRC 17002 / CCUG 31169 / CIP 107868 / KCTC 3260 / NRRL B-441) OX=321967 GN=simA PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000058 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000004788_01022.