Species | Blautia sp900753905 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Firmicutes_A; Clostridia; Lachnospirales; Lachnospiraceae; Blautia; Blautia sp900753905 | |||||||||||
CAZyme ID | MGYG000004747_01900 | |||||||||||
CAZy Family | CBM34 | |||||||||||
CAZyme Description | Neopullulanase 1 | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 20452; End: 21225 Strand: + |
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
CBM34 | 41 | 137 | 1.7e-18 | 0.9083333333333333 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
cd11338 | AmyAc_CMD | 9.62e-46 | 140 | 240 | 1 | 100 | Alpha amylase catalytic domain found in cyclomaltodextrinases and related proteins. Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. |
PRK10785 | PRK10785 | 2.28e-42 | 38 | 240 | 11 | 223 | maltodextrin glucosidase; Provisional |
cd02857 | E_set_CDase_PDE_N | 4.95e-21 | 28 | 130 | 1 | 109 | N-terminal Early set domain associated with the catalytic domain of cyclomaltodextrinase and pullulan-degrading enzymes. E or "early" set domains are associated with the catalytic domain of the cyclomaltodextrinase (CDase) and pullulan-degrading enzymes at the N-terminal end. Members of this subgroup include CDase, maltogenic amylase, and neopullulanase, all of which are capable of hydrolyzing all or two of the following three types of substrates: cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. The N-terminal domain of the CDase and pullulan-degrading enzymes may be related to the immunoglobulin and/or fibronectin type III superfamilies. These domains are associated with different types of catalytic domains at either the N-terminal or C-terminal end and may be involved in homodimeric/tetrameric/dodecameric interactions. Members of this family include members of the alpha amylase family, sialidase, galactose oxidase, cellulase, cellulose, hyaluronate lyase, chitobiase, and chitinase, among others. |
cd11340 | AmyAc_bac_CMD_like_3 | 2.95e-17 | 142 | 240 | 5 | 93 | Alpha amylase catalytic domain found in bacterial cyclomaltodextrinases and related proteins. Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). This group of CMDs is bacterial. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. |
COG0366 | AmyA | 4.82e-16 | 141 | 255 | 1 | 81 | Glycosidase [Carbohydrate transport and metabolism]. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
ASM68501.1 | 1.11e-155 | 1 | 257 | 1 | 257 |
AWY98996.1 | 1.72e-155 | 1 | 257 | 1 | 257 |
QBE96947.1 | 1.01e-147 | 1 | 257 | 1 | 257 |
QQQ94235.1 | 2.02e-147 | 1 | 257 | 1 | 257 |
ANU76656.1 | 2.02e-147 | 1 | 257 | 1 | 257 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
5Z0U_A | 4.39e-37 | 22 | 240 | 6 | 236 | Thermoactinomycesvulgaris R-47 alpha-amylase I (TVA I) 11 residues (from A363 to N373) deletion mutant (Del11) [Thermoactinomyces vulgaris] |
1IZJ_A | 4.69e-37 | 22 | 240 | 6 | 236 | ChainA, amylase [Thermoactinomyces vulgaris] |
5Z0T_A | 4.69e-37 | 22 | 240 | 6 | 236 | Thermoactinomycesvulgaris R-47 alpha-amylase I (TVA I) mutant A357V/Q359N/Y360E (AQY/VNE) [Thermoactinomyces vulgaris],5Z0T_B Thermoactinomyces vulgaris R-47 alpha-amylase I (TVA I) mutant A357V/Q359N/Y360E (AQY/VNE) [Thermoactinomyces vulgaris] |
1IZK_A | 4.69e-37 | 22 | 240 | 6 | 236 | ChainA, amylase [Thermoactinomyces vulgaris] |
2D0F_A | 4.69e-37 | 22 | 240 | 6 | 236 | ChainA, alpha-amylase I [Thermoactinomyces vulgaris] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
Q60053 | 2.99e-36 | 22 | 240 | 35 | 265 | Neopullulanase 1 OS=Thermoactinomyces vulgaris OX=2026 GN=tvaI PE=1 SV=1 |
P29964 | 1.46e-34 | 25 | 240 | 3 | 216 | Cyclomaltodextrinase OS=Thermoanaerobacter pseudethanolicus (strain ATCC 33223 / 39E) OX=340099 GN=Teth39_0676 PE=1 SV=2 |
O06988 | 5.78e-34 | 36 | 240 | 11 | 222 | Intracellular maltogenic amylase OS=Bacillus subtilis (strain 168) OX=224308 GN=bbmA PE=3 SV=2 |
P38939 | 2.42e-33 | 45 | 242 | 272 | 499 | Amylopullulanase OS=Thermoanaerobacter pseudethanolicus (strain ATCC 33223 / 39E) OX=340099 GN=apu PE=1 SV=2 |
Q9R9H8 | 3.90e-33 | 36 | 240 | 11 | 222 | Intracellular maltogenic amylase OS=Bacillus subtilis OX=1423 GN=bbmA PE=1 SV=2 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000059 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.