logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000004747_00128

You are here: Home > Sequence: MGYG000004747_00128

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Blautia sp900753905
Lineage Bacteria; Firmicutes_A; Clostridia; Lachnospirales; Lachnospiraceae; Blautia; Blautia sp900753905
CAZyme ID MGYG000004747_00128
CAZy Family GH32
CAZyme Description Sucrose-6-phosphate hydrolase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
443 MGYG000004747_2|CGC1 51352.21 5.3053
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000004747 2765913 MAG Spain Europe
Gene Location Start: 18240;  End: 19571  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000004747_00128.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH32 7 314 2.6e-86 0.9692832764505119

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd08996 GH32_FFase 4.86e-115 13 311 1 281
Glycosyl hydrolase family 32, beta-fructosidases. Glycosyl hydrolase family GH32 cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
pfam00251 Glyco_hydro_32N 4.60e-95 7 322 1 308
Glycosyl hydrolases family 32 N-terminal domain. This domain corresponds to the N-terminal domain of glycosyl hydrolase family 32 which forms a five bladed beta propeller structure.
COG1621 SacC 5.41e-95 6 424 32 458
Sucrose-6-phosphate hydrolase SacC, GH32 family [Carbohydrate transport and metabolism].
cd18623 GH32_ScrB-like 2.50e-92 14 313 2 289
glycoside hydrolase family 32 sucrose 6 phosphate hydrolase (sucrase). Glycosyl hydrolase family GH32 subgroup contains sucrose-6-phosphate hydrolase (sucrase, EC:3.2.1.26) among others. The enzyme cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose. These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
TIGR01322 scrB_fam 3.97e-90 5 420 16 439
sucrose-6-phosphate hydrolase. [Energy metabolism, Biosynthesis and degradation of polysaccharides]

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AWY99338.1 7.97e-252 2 440 1 439
QEK18231.1 2.08e-202 1 426 1 427
AWB43470.1 1.06e-170 1 431 1 433
QKS59882.1 6.82e-162 1 427 1 430
APO28255.1 1.24e-159 4 441 2 433

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
7VCO_A 3.81e-62 5 431 28 465
ChainA, Sucrose-6-phosphate hydrolase [Frischella perrara],7VCP_A Chain A, Sucrose-6-phosphate hydrolase [Frischella perrara]
1UYP_A 8.63e-52 1 316 1 290
Thethree-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_B The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_C The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_D The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_E The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_F The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8]
7BWB_A 1.99e-51 3 311 49 340
Bombyxmori GH32 beta-fructofuranosidase BmSUC1 [Bombyx mori]
1W2T_A 2.35e-51 1 316 1 290
beta-fructosidasefrom Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_B beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_C beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_D beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_E beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_F beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8]
7BWC_A 2.81e-50 3 311 49 340
Bombyxmori GH32 beta-fructofuranosidase BmSUC1 mutant D63A in complex with sucrose [Bombyx mori]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P07819 1.06e-56 3 420 29 449
Sucrose-6-phosphate hydrolase OS=Bacillus subtilis (strain 168) OX=224308 GN=sacA PE=3 SV=2
P40714 2.76e-56 6 424 28 449
Sucrose-6-phosphate hydrolase OS=Escherichia coli OX=562 GN=cscA PE=3 SV=1
F8DVG5 3.04e-55 6 432 32 480
Sucrose-6-phosphate hydrolase OS=Zymomonas mobilis subsp. mobilis (strain ATCC 10988 / DSM 424 / LMG 404 / NCIMB 8938 / NRRL B-806 / ZM1) OX=555217 GN=sacA PE=3 SV=1
P16553 2.91e-54 6 424 27 448
Raffinose invertase OS=Escherichia coli OX=562 GN=rafD PE=3 SV=1
A1STJ9 5.86e-54 3 424 96 514
Probable sucrose-6-phosphate hydrolase OS=Psychromonas ingrahamii (strain 37) OX=357804 GN=Ping_0974 PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000042 0.000006 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000004747_00128.