logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000004706_01285

You are here: Home > Sequence: MGYG000004706_01285

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Olsenella_B sp900768455
Lineage Bacteria; Actinobacteriota; Coriobacteriia; Coriobacteriales; Atopobiaceae; Olsenella_B; Olsenella_B sp900768455
CAZyme ID MGYG000004706_01285
CAZy Family GT35
CAZyme Description Maltodextrin phosphorylase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
753 MGYG000004706_3|CGC6 84769.49 4.7201
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000004706 2415363 MAG China Asia
Gene Location Start: 197933;  End: 200194  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

EC 2.4.1.1

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT35 79 753 3.9e-215 0.9955489614243324

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
PRK14986 PRK14986 0.0 28 753 53 810
glycogen phosphorylase; Provisional
COG0058 GlgP 0.0 1 753 9 748
Glucan phosphorylase [Carbohydrate transport and metabolism].
PRK14985 PRK14985 0.0 24 751 37 794
maltodextrin phosphorylase; Provisional
TIGR02093 P_ylase 0.0 10 753 6 794
glycogen/starch/alpha-glucan phosphorylases. This family consists of phosphorylases. Members use phosphate to break alpha 1,4 linkages between pairs of glucose residues at the end of long glucose polymers, releasing alpha-D-glucose 1-phosphate. The nomenclature convention is to preface the name according to the natural substrate, as in glycogen phosphorylase, starch phosphorylase, maltodextrin phosphorylase, etc. Name differences among these substrates reflect differences in patterns of branching with alpha 1,6 linkages. Members include allosterically regulated and unregulated forms. A related family, TIGR02094, contains examples known to act well on particularly small alpha 1,4 glucans, as may be found after import from exogenous sources. [Energy metabolism, Biosynthesis and degradation of polysaccharides]
cd04300 GT35_Glycogen_Phosphorylase 0.0 2 753 1 795
glycogen phosphorylase and similar proteins. This is a family of oligosaccharide phosphorylases. It includes yeast and mammalian glycogen phosphorylases, plant starch/glucan phosphorylase, as well as the maltodextrin phosphorylases of bacteria. The members of this family catalyze the breakdown of oligosaccharides into glucose-1-phosphate units. They are important allosteric enzymes in carbohydrate metabolism. The allosteric control mechanisms of yeast and mammalian members of this family are different from that of bacterial members. The members of this family belong to the GT-B structural superfamily of glycoslytransferases, which have characteristic N- and C-terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QUC04926.1 0.0 3 753 1 751
ATP54275.1 0.0 2 753 3 754
QIA34016.1 0.0 2 753 3 754
AZH70366.1 0.0 2 753 12 763
AFA54837.1 0.0 2 753 3 754

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
4L22_A 1.03e-313 10 752 13 756
Crystalstructure of putative glycogen phosphorylase from Streptococcus mutans [Streptococcus mutans UA159]
2C4M_A 4.29e-173 27 753 40 788
Starchphosphorylase: structural studies explain oxyanion-dependent kinetic stability and regulatory control. [Corynebacterium callunae],2C4M_B Starch phosphorylase: structural studies explain oxyanion-dependent kinetic stability and regulatory control. [Corynebacterium callunae],2C4M_C Starch phosphorylase: structural studies explain oxyanion-dependent kinetic stability and regulatory control. [Corynebacterium callunae],2C4M_D Starch phosphorylase: structural studies explain oxyanion-dependent kinetic stability and regulatory control. [Corynebacterium callunae]
1E4O_A 5.20e-168 7 751 15 792
Phosphorylaserecognition and phosphorolysis of its oligosaccharide substrate: answers to a long outstanding question [Escherichia coli],1E4O_B Phosphorylase recognition and phosphorolysis of its oligosaccharide substrate: answers to a long outstanding question [Escherichia coli],1QM5_A Phosphorylase recognition and phosphorylysis of its oligosaccharide substrate: answers to a long outstanding question [Escherichia coli],1QM5_B Phosphorylase recognition and phosphorylysis of its oligosaccharide substrate: answers to a long outstanding question [Escherichia coli]
7TM7_A 5.18e-167 24 751 46 800
ChainA, Alpha-1,4 glucan phosphorylase [Klebsiella pneumoniae subsp. pneumoniae HS11286],7TM7_B Chain B, Alpha-1,4 glucan phosphorylase [Klebsiella pneumoniae subsp. pneumoniae HS11286]
1L5V_A 5.78e-167 7 751 15 792
CrystalStructure of the Maltodextrin Phosphorylase complexed with Glucose-1-phosphate [Escherichia coli],1L5V_B Crystal Structure of the Maltodextrin Phosphorylase complexed with Glucose-1-phosphate [Escherichia coli],1L5W_A Crystal Structure of the Maltodextrin Phosphorylase Complexed with the Products of the Enzymatic Reaction between Glucose-1-phosphate and Maltotetraose [Escherichia coli],1L5W_B Crystal Structure of the Maltodextrin Phosphorylase Complexed with the Products of the Enzymatic Reaction between Glucose-1-phosphate and Maltotetraose [Escherichia coli],1L6I_A Crystal Structure of the Maltodextrin Phosphorylase complexed with the products of the enzymatic reaction between glucose-1-phosphate and maltopentaose [Escherichia coli],1L6I_B Crystal Structure of the Maltodextrin Phosphorylase complexed with the products of the enzymatic reaction between glucose-1-phosphate and maltopentaose [Escherichia coli],2ASV_A Chain A, Maltodextrin phosphorylase [Escherichia coli],2ASV_B Chain B, Maltodextrin phosphorylase [Escherichia coli],2AV6_A Chain A, Maltodextrin phosphorylase [Escherichia coli],2AV6_B Chain B, Maltodextrin phosphorylase [Escherichia coli],2AW3_A X-Ray studies on maltodextrin phosphorylase complexes: recognition of substrates and cathalitic mechanism of phosphorylase family [Escherichia coli],2AW3_B X-Ray studies on maltodextrin phosphorylase complexes: recognition of substrates and cathalitic mechanism of phosphorylase family [Escherichia coli],2AZD_A Chain A, Maltodextrin phosphorylase [Escherichia coli],2AZD_B Chain B, Maltodextrin phosphorylase [Escherichia coli]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P29849 0.0 3 753 2 751
Maltodextrin phosphorylase OS=Streptococcus pneumoniae serotype 4 (strain ATCC BAA-334 / TIGR4) OX=170187 GN=malP PE=3 SV=2
P39123 1.25e-172 43 753 58 794
Glycogen phosphorylase OS=Bacillus subtilis (strain 168) OX=224308 GN=glgP PE=2 SV=1
P45180 1.25e-172 29 753 54 814
Glycogen phosphorylase OS=Haemophilus influenzae (strain ATCC 51907 / DSM 11121 / KW20 / Rd) OX=71421 GN=glgP PE=3 SV=1
Q9CN90 3.47e-168 38 753 66 814
Glycogen phosphorylase OS=Pasteurella multocida (strain Pm70) OX=272843 GN=glgP PE=3 SV=1
P0AC86 8.92e-168 42 753 65 810
Glycogen phosphorylase OS=Escherichia coli (strain K12) OX=83333 GN=glgP PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000058 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000004706_01285.