Species | Olsenella_E provencensis | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Actinobacteriota; Coriobacteriia; Coriobacteriales; Atopobiaceae; Olsenella_E; Olsenella_E provencensis | |||||||||||
CAZyme ID | MGYG000004617_00363 | |||||||||||
CAZy Family | GT4 | |||||||||||
CAZyme Description | Glycosyltransferase Gtf1 | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 7754; End: 8890 Strand: - |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
cd03801 | GT4_PimA-like | 2.42e-33 | 15 | 341 | 23 | 353 | phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea. |
COG0438 | RfaB | 9.76e-30 | 48 | 341 | 61 | 362 | Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]. |
pfam00534 | Glycos_transf_1 | 4.79e-28 | 185 | 334 | 10 | 157 | Glycosyl transferases group 1. Mutations in this domain of PIGA lead to disease (Paroxysmal Nocturnal haemoglobinuria). Members of this family transfer activated sugars to a variety of substrates, including glycogen, Fructose-6-phosphate and lipopolysaccharides. Members of this family transfer UDP, ADP, GDP or CMP linked sugars. The eukaryotic glycogen synthases may be distant members of this family. |
cd03798 | GT4_WlbH-like | 2.09e-25 | 185 | 335 | 208 | 361 | Bordetella parapertussis WlbH and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. Staphylococcus aureus CapJ may be involved in capsule polysaccharide biosynthesis. WlbH in Bordetella parapertussis has been shown to be required for the biosynthesis of a trisaccharide that, when attached to the B. pertussis lipopolysaccharide (LPS) core (band B), generates band A LPS. |
cd03820 | GT4_AmsD-like | 3.10e-24 | 109 | 337 | 114 | 338 | amylovoran biosynthesis glycosyltransferase AmsD and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. AmSD in Erwinia amylovora has been shown to be involved in the biosynthesis of amylovoran, the acidic exopolysaccharide acting as a virulence factor. This enzyme may be responsible for the formation of galactose alpha-1,6 linkages in amylovoran. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
CUH92843.1 | 4.86e-66 | 1 | 365 | 3 | 374 |
QUT74862.1 | 5.63e-65 | 1 | 350 | 3 | 354 |
ADL35300.1 | 2.17e-64 | 1 | 350 | 7 | 357 |
ARJ39639.1 | 6.18e-64 | 1 | 350 | 3 | 356 |
AOZ97461.1 | 9.37e-62 | 1 | 350 | 3 | 354 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
4X6L_A | 3.88e-07 | 164 | 341 | 306 | 479 | ChainA, TarM [Staphylococcus aureus subsp. aureus 21178],4X6L_B Chain B, TarM [Staphylococcus aureus subsp. aureus 21178],4X6L_C Chain C, TarM [Staphylococcus aureus subsp. aureus 21178],4X6L_D Chain D, TarM [Staphylococcus aureus subsp. aureus 21178],4X7P_A Chain A, TarM [Staphylococcus aureus subsp. aureus 21178],4X7P_B Chain B, TarM [Staphylococcus aureus subsp. aureus 21178] |
4X7M_A | 3.88e-07 | 164 | 341 | 306 | 479 | ChainA, TarM [Staphylococcus aureus subsp. aureus 21178],4X7M_B Chain B, TarM [Staphylococcus aureus subsp. aureus 21178],4X7R_A Chain A, TarM [Staphylococcus aureus subsp. aureus 21178],4X7R_B Chain B, TarM [Staphylococcus aureus subsp. aureus 21178] |
4WAC_A | 3.91e-07 | 164 | 341 | 311 | 484 | CrystalStructure of TarM [Staphylococcus aureus],4WAD_A Crystal Structure of TarM with UDP-GlcNAc [Staphylococcus aureus] |
4N9W_A | 1.80e-06 | 161 | 341 | 179 | 354 | Crystalstructure of phosphatidyl mannosyltransferase PimA [Mycolicibacterium smegmatis MC2 155],4NC9_A Crystal structure of phosphatidyl mannosyltransferase PimA [Mycolicibacterium smegmatis MC2 155],4NC9_B Crystal structure of phosphatidyl mannosyltransferase PimA [Mycolicibacterium smegmatis MC2 155],4NC9_C Crystal structure of phosphatidyl mannosyltransferase PimA [Mycolicibacterium smegmatis MC2 155],4NC9_D Crystal structure of phosphatidyl mannosyltransferase PimA [Mycolicibacterium smegmatis MC2 155] |
2GEJ_A | 1.86e-06 | 161 | 341 | 195 | 370 | CrystalStructure of phosphatidylinositol mannosyltransferase (PimA) from Mycobacterium smegmatis in complex with GDP-Man [Mycolicibacterium smegmatis MC2 155],2GEK_A Crystal Structure of phosphatidylinositol mannosyltransferase (PimA) from Mycobacterium smegmatis in complex with GDP [Mycolicibacterium smegmatis MC2 155] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
A0A0H2WWV6 | 2.13e-06 | 164 | 341 | 306 | 479 | Poly(ribitol-phosphate) alpha-N-acetylglucosaminyltransferase OS=Staphylococcus aureus (strain COL) OX=93062 GN=tarM PE=1 SV=1 |
A0QWG6 | 9.77e-06 | 161 | 341 | 175 | 350 | Phosphatidyl-myo-inositol mannosyltransferase OS=Mycolicibacterium smegmatis (strain ATCC 700084 / mc(2)155) OX=246196 GN=pimA PE=1 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000061 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.