Species | UMGS902 sp900761025 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Firmicutes_A; Clostridia; Oscillospirales; CAG-272; UMGS902; UMGS902 sp900761025 | |||||||||||
CAZyme ID | MGYG000004214_00497 | |||||||||||
CAZy Family | GH31 | |||||||||||
CAZyme Description | hypothetical protein | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 21084; End: 23900 Strand: - |
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GH31 | 303 | 549 | 4.7e-44 | 0.5480093676814989 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
pfam01055 | Glyco_hydro_31 | 5.85e-56 | 197 | 538 | 15 | 390 | Glycosyl hydrolases family 31. Glycosyl hydrolases are key enzymes of carbohydrate metabolism. Family 31 comprises of enzymes that are, or similar to, alpha- galactosidases. |
COG1501 | YicI | 3.62e-48 | 164 | 809 | 217 | 746 | Alpha-glucosidase, glycosyl hydrolase family GH31 [Carbohydrate transport and metabolism]. |
cd06595 | GH31_u1 | 7.24e-46 | 212 | 493 | 12 | 302 | glycosyl hydrolase family 31 (GH31); uncharacterized subgroup. This family represents an uncharacterized GH31 enzyme subgroup found in bacteria and eukaryotes. Enzymes of the GH31 family possess a wide range of different hydrolytic activities including alpha-glucosidase (glucoamylase and sucrase-isomaltase), alpha-xylosidase, 6-alpha-glucosyltransferase, 3-alpha-isomaltosyltransferase and alpha-1,4-glucan lyase. All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. |
cd06598 | GH31_transferase_CtsZ | 1.45e-35 | 202 | 501 | 1 | 332 | CtsZ (cyclic tetrasaccharide-synthesizing enzyme Z)-like. CtsZ is a bacterial 6-alpha-glucosyltransferase, first identified in Arthrobacter globiformis, that produces cyclic tetrasaccharides together with a closely related enzyme CtsY. CtsZ and CtsY both have a glycosyl hydrolase family 31 (GH31) catalytic domain; CtsY belongs to a different subfamily. All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. |
cd06589 | GH31 | 2.61e-34 | 202 | 455 | 1 | 241 | glycosyl hydrolase family 31 (GH31). GH31 enzymes occur in prokaryotes, eukaryotes, and archaea with a wide range of hydrolytic activities, including alpha-glucosidase (glucoamylase and sucrase-isomaltase), alpha-xylosidase, 6-alpha-glucosyltransferase, 3-alpha-isomaltosyltransferase and alpha-1,4-glucan lyase. All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. In most cases, the pyranose moiety recognized in subsite -1 of the substrate binding site is an alpha-D-glucose, though some GH31 family members show a preference for alpha-D-xylose. Several GH31 enzymes can accommodate both glucose and xylose and different levels of discrimination between the two have been observed. Most characterized GH31 enzymes are alpha-glucosidases. In mammals, GH31 members with alpha-glucosidase activity are implicated in at least three distinct biological processes. The lysosomal acid alpha-glucosidase (GAA) is essential for glycogen degradation and a deficiency or malfunction of this enzyme causes glycogen storage disease II, also known as Pompe disease. In the endoplasmic reticulum, alpha-glucosidase II catalyzes the second step in the N-linked oligosaccharide processing pathway that constitutes part of the quality control system for glycoprotein folding and maturation. The intestinal enzymes sucrase-isomaltase (SI) and maltase-glucoamylase (MGAM) play key roles in the final stage of carbohydrate digestion, making alpha-glucosidase inhibitors useful in the treatment of type 2 diabetes. GH31 alpha-glycosidases are retaining enzymes that cleave their substrates via an acid/base-catalyzed, double-displacement mechanism involving a covalent glycosyl-enzyme intermediate. Two aspartic acid residues have been identified as the catalytic nucleophile and the acid/base, respectively. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
AIE84875.1 | 1.44e-110 | 38 | 822 | 18 | 775 |
ARN57252.1 | 4.19e-81 | 136 | 860 | 264 | 844 |
AQQ09813.1 | 2.10e-76 | 122 | 860 | 237 | 844 |
QMS85466.1 | 3.50e-37 | 41 | 538 | 29 | 538 |
CCQ33069.1 | 8.44e-36 | 34 | 815 | 29 | 693 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
4B9Y_A | 1.08e-29 | 158 | 555 | 209 | 638 | CrystalStructure of Apo Agd31B, alpha-transglucosylase in Glycoside Hydrolase Family 31 [Cellvibrio japonicus],4B9Z_A Crystal Structure of Agd31B, alpha-transglucosylase, complexed with Acarbose [Cellvibrio japonicus],4BA0_A Crystal Structure of Agd31B, alpha-transglucosylase, complexed with 5F-alpha-GlcF [Cellvibrio japonicus] |
5I23_A | 1.13e-29 | 158 | 555 | 186 | 615 | CrystalStructure of Agd31B, alpha-transglucosylase in Glycoside Hydrolase Family 31, in complex with Cyclophellitol Aziridine probe CF022 [Cellvibrio japonicus Ueda107],5I24_A Crystal Structure of Agd31B, alpha-transglucosylase in Glycoside Hydrolase Family 31, in complex with Cyclophellitol Aziridine probe CF021 [Cellvibrio japonicus Ueda107],5NPB_A Crystal Structure of cjAgd31B (alpha-transglucosylase from Glycoside Hydrolase Family 31) in complex with alpha Cyclophellitol Cyclosulfate probe ME647 [Cellvibrio japonicus],5NPE_A Crystal Structure of cjAgd31B (alpha-transglucosylase from Glycoside Hydrolase Family 31) in complex with beta Cyclophellitol Aziridine probe KY358 [Cellvibrio japonicus Ueda107] |
5NPC_A | 3.43e-29 | 158 | 555 | 185 | 614 | CrystalStructure of D412N nucleophile mutant cjAgd31B (alpha-transglucosylase from Glycoside Hydrolase Family 31) in complex with unreacted alpha Cyclophellitol Cyclosulfate probe ME647 [Cellvibrio japonicus],5NPD_A Crystal Structure of D412N nucleophile mutant cjAgd31B (alpha-transglucosylase from Glycoside Hydrolase Family 31) in complex with alpha Cyclophellitol Aziridine probe CF021 [Cellvibrio japonicus] |
7WJ9_A | 1.91e-24 | 180 | 539 | 184 | 555 | ChainA, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJ9_B Chain B, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJ9_C Chain C, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJ9_D Chain D, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJ9_E Chain E, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJ9_F Chain F, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJA_A Chain A, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJB_A Chain A, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WLG_A Chain A, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WLG_B Chain B, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WLG_C Chain C, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WLG_D Chain D, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WLG_E Chain E, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WLG_F Chain F, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363] |
7WJC_A | 1.76e-23 | 180 | 539 | 184 | 555 | ChainA, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJD_A Chain A, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJE_A Chain A, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJF_A Chain A, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
B3PEE6 | 5.91e-29 | 158 | 555 | 209 | 638 | Oligosaccharide 4-alpha-D-glucosyltransferase OS=Cellvibrio japonicus (strain Ueda107) OX=498211 GN=agd31B PE=1 SV=1 |
Q9P999 | 1.19e-22 | 178 | 539 | 187 | 570 | Alpha-xylosidase OS=Saccharolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2) OX=273057 GN=xylS PE=1 SV=1 |
Q9F234 | 4.04e-22 | 166 | 541 | 217 | 625 | Alpha-glucosidase 2 OS=Bacillus thermoamyloliquefaciens OX=1425 PE=3 SV=1 |
P79403 | 1.13e-21 | 197 | 549 | 379 | 767 | Neutral alpha-glucosidase AB OS=Sus scrofa OX=9823 GN=GANAB PE=1 SV=1 |
Q8BHN3 | 4.45e-21 | 197 | 549 | 379 | 767 | Neutral alpha-glucosidase AB OS=Mus musculus OX=10090 GN=Ganab PE=1 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
0.003845 | 0.994387 | 0.000596 | 0.000655 | 0.000261 | 0.000218 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.