Species | CAG-1427 sp900554685 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Actinobacteriota; Coriobacteriia; Coriobacteriales; Eggerthellaceae; CAG-1427; CAG-1427 sp900554685 | |||||||||||
CAZyme ID | MGYG000004134_00577 | |||||||||||
CAZy Family | GT0 | |||||||||||
CAZyme Description | UDP-N-acetylglucosamine 2-epimerase | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 76013; End: 77080 Strand: + |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
COG0381 | WecB | 1.37e-175 | 1 | 354 | 19 | 376 | UDP-N-acetylglucosamine 2-epimerase [Cell wall/membrane/envelope biogenesis]. |
TIGR00236 | wecB | 3.08e-173 | 1 | 348 | 16 | 363 | UDP-N-acetylglucosamine 2-epimerase. This cytosolic enzyme converts UDP-N-acetyl-D-glucosamine to UDP-N-acetyl-D-mannosamine. In E. coli, this is the first step in the pathway of enterobacterial common antigen biosynthesis.Members of this orthology group have many gene symbols, often reflecting the overall activity of the pathway and/or operon that includes it. Symbols include epsC (exopolysaccharide C) in Burkholderia solanacerum, cap8P (type 8 capsule P) in Staphylococcus aureus, and nfrC in an older designation based on the effects of deletion on phage N4 adsorption. Epimerase activity was also demonstrated in a bifunctional rat enzyme, for which the N-terminal domain appears to be orthologous. The set of proteins found above the suggested cutoff includes E. coli WecB in one of two deeply branched clusters and the rat UDP-N-acetylglucosamine 2-epimerase domain in the other. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] |
pfam02350 | Epimerase_2 | 6.57e-156 | 6 | 347 | 1 | 336 | UDP-N-acetylglucosamine 2-epimerase. This family consists of UDP-N-acetylglucosamine 2-epimerases EC:5.1.3.14 this enzyme catalyzes the production of UDP-ManNAc from UDP-GlcNAc. Note that some of the enzymes is this family are bifunctional, in these instances Pfam matches only the N-terminal half of the protein suggesting that the additional C-terminal part (when compared to mono-functional members of this family) is responsible for the UPD-N-acetylmannosamine kinase activity of these enzymes. This hypothesis is further supported by the assumption that the C-terminal part of rat Gne is the kinase domain. |
cd03786 | GTB_UDP-GlcNAc_2-Epimerase | 1.89e-147 | 1 | 346 | 15 | 364 | UDP-N-acetylglucosamine 2-epimerase and similar proteins. Bacterial members of the UDP-N-Acetylglucosamine (GlcNAc) 2-Epimerase family (EC 5.1.3.14) are known to catalyze the reversible interconversion of UDP-GlcNAc and UDP-N-acetylmannosamine (UDP-ManNAc). The enzyme serves to produce an activated form of ManNAc residues (UDP-ManNAc) for use in the biosynthesis of a variety of cell surface polysaccharides; The mammalian enzyme is bifunctional, catalyzing both the inversion of stereochemistry at C-2 and the hydrolysis of the UDP-sugar linkage to generate free ManNAc. It also catalyzes the phosphorylation of ManNAc to generate ManNAc 6-phosphate, a precursor to salic acids. In mammals, sialic acids are found at the termini of oligosaccharides in a large variety of cell surface glycoconjugates and are key mediators of cell-cell recognition events. Mutations in human members of this family have been associated with Sialuria, a rare disease caused by the disorders of sialic acid metabolism. This family belongs to the GT-B structural superfamily of glycoslytransferases, which have characteristic N- and C-terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. |
pfam13439 | Glyco_transf_4 | 9.81e-06 | 4 | 161 | 11 | 167 | Glycosyltransferase Family 4. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
QTF54836.1 | 4.63e-183 | 1 | 350 | 17 | 365 |
QLA08260.1 | 1.14e-171 | 1 | 346 | 17 | 361 |
AUV68874.1 | 7.86e-142 | 1 | 353 | 17 | 368 |
AUV66492.1 | 7.86e-142 | 1 | 353 | 17 | 368 |
AMW24368.1 | 4.51e-141 | 1 | 353 | 17 | 368 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
3BEO_A | 5.10e-155 | 1 | 346 | 24 | 369 | AStructural Basis for the allosteric regulation of non-hydrolyzing UDP-GlcNAc 2-epimerases [Bacillus anthracis],3BEO_B A Structural Basis for the allosteric regulation of non-hydrolyzing UDP-GlcNAc 2-epimerases [Bacillus anthracis] |
4FKZ_A | 7.55e-153 | 1 | 353 | 19 | 370 | Crystalstructure of Bacillus subtilis UDP-GlcNAc 2-epimerase in complex with UDP-GlcNAc and UDP [Bacillus subtilis subsp. subtilis str. 168],4FKZ_B Crystal structure of Bacillus subtilis UDP-GlcNAc 2-epimerase in complex with UDP-GlcNAc and UDP [Bacillus subtilis subsp. subtilis str. 168] |
3OT5_A | 1.69e-150 | 1 | 352 | 43 | 394 | 2.2Angstrom Resolution Crystal Structure of putative UDP-N-acetylglucosamine 2-epimerase from Listeria monocytogenes [Listeria monocytogenes EGD-e],3OT5_B 2.2 Angstrom Resolution Crystal Structure of putative UDP-N-acetylglucosamine 2-epimerase from Listeria monocytogenes [Listeria monocytogenes EGD-e],3OT5_C 2.2 Angstrom Resolution Crystal Structure of putative UDP-N-acetylglucosamine 2-epimerase from Listeria monocytogenes [Listeria monocytogenes EGD-e],3OT5_D 2.2 Angstrom Resolution Crystal Structure of putative UDP-N-acetylglucosamine 2-epimerase from Listeria monocytogenes [Listeria monocytogenes EGD-e] |
1O6C_A | 4.43e-147 | 3 | 353 | 21 | 370 | Crystalstructure of UDP-N-acetylglucosamine 2-epimerase [Bacillus subtilis],1O6C_B Crystal structure of UDP-N-acetylglucosamine 2-epimerase [Bacillus subtilis] |
5ENZ_A | 3.57e-138 | 1 | 342 | 17 | 357 | S.aureus MnaA-UDP co-structure [Staphylococcus aureus],5ENZ_B S. aureus MnaA-UDP co-structure [Staphylococcus aureus] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
P39131 | 3.13e-152 | 1 | 353 | 19 | 370 | UDP-N-acetylglucosamine 2-epimerase OS=Bacillus subtilis (strain 168) OX=224308 GN=mnaA PE=1 SV=1 |
Q9X0C4 | 3.87e-128 | 1 | 351 | 17 | 369 | Putative UDP-N-acetylglucosamine 2-epimerase OS=Thermotoga maritima (strain ATCC 43589 / DSM 3109 / JCM 10099 / NBRC 100826 / MSB8) OX=243274 GN=TM_1034 PE=3 SV=1 |
P58600 | 3.50e-123 | 1 | 347 | 17 | 371 | Probable UDP-N-acetylglucosamine 2-epimerase OS=Ralstonia solanacearum (strain GMI1000) OX=267608 GN=epsC PE=3 SV=1 |
P52641 | 1.41e-122 | 1 | 347 | 17 | 371 | Probable UDP-N-acetylglucosamine 2-epimerase OS=Ralstonia solanacearum OX=305 GN=epsC PE=3 SV=2 |
Q8ZAE3 | 2.07e-122 | 1 | 347 | 16 | 370 | UDP-N-acetylglucosamine 2-epimerase OS=Yersinia pestis OX=632 GN=wecB PE=3 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000042 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.