Species | HGM13222 sp900757485 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Firmicutes_A; Clostridia; Oscillospirales; Ruminococcaceae; HGM13222; HGM13222 sp900757485 | |||||||||||
CAZyme ID | MGYG000004022_00737 | |||||||||||
CAZy Family | GH38 | |||||||||||
CAZyme Description | Mannosylglycerate hydrolase | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 165136; End: 167835 Strand: - |
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GH38 | 7 | 276 | 1.9e-52 | 0.966542750929368 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
PRK09819 | PRK09819 | 2.10e-118 | 5 | 896 | 3 | 874 | mannosylglycerate hydrolase. |
cd10814 | GH38N_AMII_SpGH38_like | 2.48e-81 | 7 | 280 | 1 | 267 | N-terminal catalytic domain of SPGH38, a putative alpha-mannosidase of Streptococcus pyogenes, and its prokaryotic homologs; glycoside hydrolase family 38 (GH38). The subfamily is represented by SpGH38 of Streptococcus pyogenes, which has been assigned as a putative alpha-mannosidase, and is encoded by ORF spy1604. SpGH38 appears to exist as an elongated dimer and display alpha-1,3 mannosidase activity. It is active on disaccharides and some aryl glycosides. SpGH38 can also effectively deglycosylate human N-glycans in vitro. A divalent metal ion, such as a zinc ion, is required for its activity. SpGH38 is inhibited by swainsonine. The absence of any secretion signal peptide suggests that SpGH38 may be intracellular. |
COG0383 | AMS1 | 1.06e-66 | 5 | 896 | 3 | 941 | Alpha-mannosidase [Carbohydrate transport and metabolism]. |
cd10815 | GH38N_AMII_EcMngB_like | 1.70e-62 | 7 | 280 | 1 | 266 | N-terminal catalytic domain of Escherichia coli alpha-mannosidase MngB and its bacterial homologs; glycoside hydrolase family 38 (GH38). The bacterial subfamily is represented by Escherichia coli alpha-mannosidase MngB, which is encoded by the mngB gene (previously called ybgG). MngB exhibits alpha-mannosidase activity that converts 2-O-(6-phospho-alpha-mannosyl)-D-glycerate to mannose-6-phosphate and glycerate in the pathway which enables use of mannosyl-D-glycerate as a sole carbon source. A divalent metal ion is required for its activity. |
cd10790 | GH38N_AMII_1 | 2.58e-45 | 7 | 280 | 1 | 269 | N-terminal catalytic domain of putative prokaryotic class II alpha-mannosidases; glycoside hydrolase family 38 (GH38). This mainly bacterial subfamily corresponds to a group of putative class II alpha-mannosidases, including various proteins assigned as alpha-mannosidases, Streptococcus pyogenes (SpGH38) encoded by ORF spy1604. Escherichia coli MngB encoded by the mngB/ybgG gene, and Thermotoga maritime TMM, and similar proteins. SpGH38 targets alpha-1,3 mannosidic linkages. SpGH38 appears to exist as an elongated dimer and display alpha-1,3 mannosidase activity. It is active on disaccharides and some aryl glycosides. SpGH38 can also effectively deglycosylate human N-glycans in vitro. MngB exhibits alpha-mannosidase activity that catalyzes the conversion of 2-O-(6-phospho-alpha-mannosyl)-D-glycerate to mannose-6-phosphate and glycerate in the pathway which enables use of mannosyl-D-glycerate as a sole carbon source. TMM is a homodimeric enzyme that hydrolyzes p-nitrophenyl-alpha-D-mannopyranoside, alpha -1,2-mannobiose, alpha -1,3-mannobiose, alpha -1,4-mannobiose, and alpha -1,6-mannobiose. The GH38 family contains retaining glycosyl hydrolases that employ a two-step mechanism involving the formation of a covalent glycosyl enzyme complex. Two carboxylic acids positioned within the active site act in concert: one as a catalytic nucleophile and the other as a general acid/base catalyst. Divalent metal ions, such as zinc or cobalt ions, are suggested to be required for the catalytic activities of typical class II alpha-mannosidases. However, TMM requires the cobalt or cadmium for its activity. The cadmium ion dependency is unique to TMM. Moreover, TMM is inhibited by swainsonine but not 1-deoxymannojirimycin, which is in agreement with the features of cytosolic alpha-mannosidase. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
QGQ94280.1 | 3.18e-223 | 1 | 896 | 1 | 896 |
AUS96690.1 | 3.38e-223 | 1 | 896 | 1 | 889 |
QNK54964.1 | 2.22e-153 | 7 | 873 | 8 | 896 |
AVM44191.1 | 6.86e-138 | 6 | 871 | 1 | 885 |
QGQ99394.1 | 2.67e-136 | 7 | 896 | 24 | 929 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
5KBP_A | 1.76e-85 | 5 | 895 | 6 | 896 | Thecrystal structure of an alpha-mannosidase from Enterococcus faecalis V583 [Enterococcus faecalis V583],5KBP_B The crystal structure of an alpha-mannosidase from Enterococcus faecalis V583 [Enterococcus faecalis V583] |
3LVT_A | 3.86e-82 | 5 | 895 | 6 | 896 | TheCrystal Structure of a Protein in the Glycosyl Hydrolase Family 38 from Enterococcus faecalis to 2.55A [Enterococcus faecalis V583] |
2WYH_A | 6.11e-79 | 7 | 852 | 27 | 888 | Structureof the Streptococcus pyogenes family GH38 alpha-mannosidase [Streptococcus pyogenes M1 GAS],2WYH_B Structure of the Streptococcus pyogenes family GH38 alpha-mannosidase [Streptococcus pyogenes M1 GAS],2WYI_A Structure of the Streptococcus pyogenes family GH38 alpha-mannosidase complexed with swainsonine [Streptococcus pyogenes M1 GAS],2WYI_B Structure of the Streptococcus pyogenes family GH38 alpha-mannosidase complexed with swainsonine [Streptococcus pyogenes M1 GAS] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
Q9KER1 | 5.96e-83 | 5 | 895 | 2 | 894 | Putative mannosylglycerate hydrolase OS=Alkalihalobacillus halodurans (strain ATCC BAA-125 / DSM 18197 / FERM 7344 / JCM 9153 / C-125) OX=272558 GN=mngB PE=3 SV=2 |
P54746 | 1.80e-75 | 7 | 870 | 6 | 853 | Mannosylglycerate hydrolase OS=Escherichia coli (strain K12) OX=83333 GN=mngB PE=1 SV=2 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000054 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.