logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000003753_01055

You are here: Home > Sequence: MGYG000003753_01055

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Criibacterium bergeronii
Lineage Bacteria; Firmicutes_A; Clostridia; Peptostreptococcales; Filifactoraceae; Criibacterium; Criibacterium bergeronii
CAZyme ID MGYG000003753_01055
CAZy Family GT2
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
353 MGYG000003753_14|CGC1 40966.77 5.2008
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000003753 1981101 MAG Canada North America
Gene Location Start: 24673;  End: 25734  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000003753_01055.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 3 102 1.5e-19 0.6352941176470588

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd02511 Beta4Glucosyltransferase 3.28e-43 1 195 1 188
UDP-glucose LOS-beta-1,4 glucosyltransferase is required for biosynthesis of lipooligosaccharide. UDP-glucose: lipooligosaccharide (LOS) beta-1-4-glucosyltransferase catalyzes the addition of the first residue, glucose, of the lacto-N-neotetrase structure to HepI of the LOS inner core. LOS is the major constituent of the outer leaflet of the outer membrane of gram-positive bacteria. It consists of a short oligosaccharide chain of variable composition (alpha chain) attached to a branched inner core which is lined in turn to lipid A. Beta 1,4 glucosyltransferase is required to attach the alpha chain to the inner core.
pfam00535 Glycos_transf_2 4.39e-18 3 161 1 152
Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids.
TIGR04195 S_glycosyl_SunS 1.26e-15 2 282 59 338
peptide S-glycosyltransferase, SunS family. Members of this family include SunS, the S-glycosyltransferase that transfers a sugar (substrate is variable in reconstitution assays) onto the precursor of the glycopeptide sublancin, which once was thought to be a lantibiotic.
COG0463 WcaA 1.05e-14 1 94 4 105
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd00761 Glyco_tranf_GTA_type 1.11e-14 4 106 1 113
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
CUH91928.1 3.50e-72 1 352 1 347
AEN95307.1 1.03e-69 2 352 3 377
CBL12551.1 1.16e-69 1 350 15 393
CBL07991.1 1.29e-68 1 350 15 393
BBF45212.1 1.14e-66 1 349 1 344

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
7MSP_A 5.29e-11 6 282 60 334
ChainA, SPbeta prophage-derived glycosyltransferase SunS [Bacillus subtilis subsp. subtilis str. 168],7MSP_B Chain B, SPbeta prophage-derived glycosyltransferase SunS [Bacillus subtilis subsp. subtilis str. 168]
7MSN_A 5.47e-11 6 307 60 370
ChainA, SPbeta prophage-derived glycosyltransferase SunS [Bacillus subtilis subsp. subtilis str. 168],7MSN_B Chain B, SPbeta prophage-derived glycosyltransferase SunS [Bacillus subtilis subsp. subtilis str. 168]
7MSK_A 9.94e-11 6 87 72 155
ChainA, Glyco_trans_2-like domain-containing protein [Bacillus thuringiensis serovar andalousiensis BGSC 4AW1],7MSK_B Chain B, Glyco_trans_2-like domain-containing protein [Bacillus thuringiensis serovar andalousiensis BGSC 4AW1]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P42460 4.62e-13 2 83 10 91
TPR repeat-containing protein Synpcc7942_0270 OS=Synechococcus elongatus (strain PCC 7942 / FACHB-805) OX=1140 GN=Synpcc7942_0270 PE=4 SV=1
Q68XF1 1.10e-11 2 136 4 138
Uncharacterized glycosyltransferase RT0209 OS=Rickettsia typhi (strain ATCC VR-144 / Wilmington) OX=257363 GN=RT0209 PE=3 SV=1
P44029 1.34e-11 2 154 4 156
Uncharacterized glycosyltransferase HI_0653 OS=Haemophilus influenzae (strain ATCC 51907 / DSM 11121 / KW20 / Rd) OX=71421 GN=HI_0653 PE=3 SV=1
O05944 3.63e-11 2 136 4 138
Uncharacterized glycosyltransferase RP128 OS=Rickettsia prowazekii (strain Madrid E) OX=272947 GN=RP218 PE=3 SV=1
O31986 3.00e-10 6 307 60 370
SPbeta prophage-derived glycosyltransferase SunS OS=Bacillus subtilis (strain 168) OX=224308 GN=sunS PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000047 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000003753_01055.