logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000003687_04986

You are here: Home > Sequence: MGYG000003687_04986

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Paenibacillus polymyxa
Lineage Bacteria; Firmicutes; Bacilli; Paenibacillales; Paenibacillaceae; Paenibacillus; Paenibacillus polymyxa
CAZyme ID MGYG000003687_04986
CAZy Family GH32
CAZyme Description Sucrose-6-phosphate hydrolase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
219 MGYG000003687_30|CGC1 25238.22 5.0113
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000003687 5656034 Isolate China Asia
Gene Location Start: 44888;  End: 45547  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

EC 3.2.1.26

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH32 1 196 9.7e-68 0.6279863481228669

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd08996 GH32_FFase 3.37e-90 1 196 32 219
Glycosyl hydrolase family 32, beta-fructosidases. Glycosyl hydrolase family GH32 cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
cd18623 GH32_ScrB-like 3.59e-88 2 200 33 228
glycoside hydrolase family 32 sucrose 6 phosphate hydrolase (sucrase). Glycosyl hydrolase family GH32 subgroup contains sucrose-6-phosphate hydrolase (sucrase, EC:3.2.1.26) among others. The enzyme cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose. These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
pfam00251 Glyco_hydro_32N 4.94e-83 1 208 38 245
Glycosyl hydrolases family 32 N-terminal domain. This domain corresponds to the N-terminal domain of glycosyl hydrolase family 32 which forms a five bladed beta propeller structure.
TIGR01322 scrB_fam 2.89e-82 1 204 55 259
sucrose-6-phosphate hydrolase. [Energy metabolism, Biosynthesis and degradation of polysaccharides]
COG1621 SacC 6.09e-77 1 194 70 261
Sucrose-6-phosphate hydrolase SacC, GH32 family [Carbohydrate transport and metabolism].

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AJE54153.1 7.89e-155 1 199 64 262
QDA29243.1 8.72e-155 1 199 68 266
QPK55256.1 8.72e-155 1 199 68 266
AIY07074.1 8.72e-155 1 199 68 266
QPK60339.1 8.72e-155 1 199 68 266

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
7BWB_A 1.88e-63 1 202 90 284
Bombyxmori GH32 beta-fructofuranosidase BmSUC1 [Bombyx mori]
7BWC_A 1.88e-63 1 202 90 284
Bombyxmori GH32 beta-fructofuranosidase BmSUC1 mutant D63A in complex with sucrose [Bombyx mori]
7VCO_A 1.94e-59 1 192 67 256
ChainA, Sucrose-6-phosphate hydrolase [Frischella perrara],7VCP_A Chain A, Sucrose-6-phosphate hydrolase [Frischella perrara]
1UYP_A 1.63e-38 3 168 46 206
Thethree-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_B The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_C The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_D The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_E The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_F The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8]
6NUM_A 3.80e-38 1 190 81 278
Thestructure of GH32 from Bifidobacteium adolescentis [Bifidobacterium adolescentis],6NUN_A Structure of GH32 hydrolase from Bifidobacterium adolescentis in complex with frutose [Bifidobacterium adolescentis]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P40714 3.06e-66 1 190 66 253
Sucrose-6-phosphate hydrolase OS=Escherichia coli OX=562 GN=cscA PE=3 SV=1
F8DVG5 1.73e-62 1 192 70 269
Sucrose-6-phosphate hydrolase OS=Zymomonas mobilis subsp. mobilis (strain ATCC 10988 / DSM 424 / LMG 404 / NCIMB 8938 / NRRL B-806 / ZM1) OX=555217 GN=sacA PE=3 SV=1
P0DJA7 9.49e-62 1 192 70 269
Sucrose-6-phosphate hydrolase OS=Zymomonas mobilis subsp. mobilis (strain ATCC 31821 / ZM4 / CP4) OX=264203 GN=sacA PE=1 SV=1
P16553 2.58e-56 1 192 65 254
Raffinose invertase OS=Escherichia coli OX=562 GN=rafD PE=3 SV=1
P07819 5.12e-52 3 198 72 266
Sucrose-6-phosphate hydrolase OS=Bacillus subtilis (strain 168) OX=224308 GN=sacA PE=3 SV=2

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000054 0.000001 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000003687_04986.