Species | Parabacteroides sp900770835 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Tannerellaceae; Parabacteroides; Parabacteroides sp900770835 | |||||||||||
CAZyme ID | MGYG000003521_00057 | |||||||||||
CAZy Family | GT94 | |||||||||||
CAZyme Description | D-inositol-3-phosphate glycosyltransferase | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 745; End: 1866 Strand: + |
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GT94 | 115 | 302 | 3.5e-23 | 0.6219081272084805 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
cd03822 | GT4_mannosyltransferase-like | 2.39e-43 | 2 | 339 | 1 | 337 | mannosyltransferases of glycosyltransferase family 4 and similar proteins. This family is most closely related to the GT1 family of glycosyltransferases. ORF704 in E. coli has been shown to be involved in the biosynthesis of O-specific mannose homopolysaccharides. |
cd03801 | GT4_PimA-like | 6.92e-32 | 2 | 337 | 1 | 330 | phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea. |
COG0438 | RfaB | 8.51e-27 | 1 | 373 | 1 | 377 | Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]. |
cd03809 | GT4_MtfB-like | 9.22e-19 | 103 | 359 | 88 | 353 | glycosyltransferases MtfB, WbpX, and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. MtfB (mannosyltransferase B) in E. coli has been shown to direct the growth of the O9-specific polysaccharide chain. It transfers two mannoses into the position 3 of the previously synthesized polysaccharide. |
pfam13692 | Glyco_trans_1_4 | 1.00e-18 | 199 | 339 | 1 | 137 | Glycosyl transferases group 1. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
QUR48063.1 | 3.89e-205 | 1 | 370 | 1 | 370 |
AST55484.1 | 1.58e-204 | 1 | 370 | 1 | 370 |
QUT97664.1 | 1.58e-204 | 1 | 370 | 1 | 370 |
QKH99047.1 | 9.13e-204 | 1 | 370 | 1 | 370 |
QIX64763.1 | 9.13e-204 | 1 | 370 | 1 | 370 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
D4GU66 | 3.48e-19 | 69 | 365 | 66 | 363 | Low-salt glycan biosynthesis hexosyltransferase Agl5 OS=Haloferax volcanii (strain ATCC 29605 / DSM 3757 / JCM 8879 / NBRC 14742 / NCIMB 2012 / VKM B-1768 / DS2) OX=309800 GN=agl5 PE=3 SV=1 |
Q9R9N2 | 1.12e-10 | 185 | 321 | 153 | 295 | Lipopolysaccharide core biosynthesis mannosyltransferase LpsB OS=Rhizobium meliloti (strain 1021) OX=266834 GN=lpsB PE=3 SV=1 |
Q8P804 | 1.16e-08 | 119 | 303 | 102 | 273 | GDP-mannose:glycolipid 4-beta-D-mannosyltransferase OS=Xanthomonas campestris pv. campestris (strain ATCC 33913 / DSM 3586 / NCPPB 528 / LMG 568 / P 25) OX=190485 GN=gumI PE=3 SV=1 |
Q56775 | 2.07e-08 | 119 | 303 | 102 | 273 | GDP-mannose:glycolipid 4-beta-D-mannosyltransferase OS=Xanthomonas campestris pv. campestris OX=340 GN=gumI PE=1 SV=2 |
B8HCF8 | 1.43e-07 | 186 | 338 | 212 | 369 | D-inositol 3-phosphate glycosyltransferase OS=Pseudarthrobacter chlorophenolicus (strain ATCC 700700 / DSM 12829 / CIP 107037 / JCM 12360 / KCTC 9906 / NCIMB 13794 / A6) OX=452863 GN=mshA PE=3 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000072 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.