logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000003399_02596

You are here: Home > Sequence: MGYG000003399_02596

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Serratia ureilytica
Lineage Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacterales; Enterobacteriaceae; Serratia; Serratia ureilytica
CAZyme ID MGYG000003399_02596
CAZy Family GT4
CAZyme Description Glycosyltransferase Gtf1
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
388 MGYG000003399_14|CGC1 43464.2 8.1711
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000003399 5050953 MAG United States North America
Gene Location Start: 54432;  End: 55598  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000003399_02596.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 181 308 1.9e-22 0.8

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03811 GT4_GT28_WabH-like 9.04e-33 4 308 3 317
family 4 and family 28 glycosyltransferases similar to Klebsiella WabH. This family is most closely related to the GT1 family of glycosyltransferases. WabH in Klebsiella pneumoniae has been shown to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the cellular outer core.
cd03801 GT4_PimA-like 1.57e-30 12 384 13 366
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
cd03819 GT4_WavL-like 1.42e-25 12 291 10 294
Vibrio cholerae WavL and similar sequences. This family is most closely related to the GT4 family of glycosyltransferases. WavL in Vibrio cholerae has been shown to be involved in the biosynthesis of the lipopolysaccharide core.
COG0438 RfaB 2.25e-25 1 387 3 378
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
pfam00534 Glycos_transf_1 4.25e-24 178 308 2 133
Glycosyl transferases group 1. Mutations in this domain of PIGA lead to disease (Paroxysmal Nocturnal haemoglobinuria). Members of this family transfer activated sugars to a variety of substrates, including glycogen, Fructose-6-phosphate and lipopolysaccharides. Members of this family transfer UDP, ADP, GDP or CMP linked sugars. The eukaryotic glycogen synthases may be distant members of this family.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QDI54720.1 4.56e-289 1 388 1 388
SNY86148.1 2.64e-288 1 388 1 388
QNL00365.1 2.64e-288 1 388 1 388
AWC82596.1 2.64e-288 1 388 1 388
AIM24167.1 2.64e-288 1 388 1 388

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
7EC2_A 1.90e-09 185 314 325 454
ChainA, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC2_B Chain B, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300]
5D00_A 2.51e-07 200 341 216 369
Crystalstructure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate and UMP [Bacillus subtilis subsp. subtilis str. 168],5D00_B Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate and UMP [Bacillus subtilis subsp. subtilis str. 168],5D01_A Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate [Bacillus subtilis subsp. subtilis str. 168],5D01_B Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate [Bacillus subtilis subsp. subtilis str. 168]
4PQG_A 9.26e-06 177 303 327 452
Crystalstructure of the pneumococcal O-GlcNAc transferase GtfA in complex with UDP and GlcNAc [Streptococcus pneumoniae TIGR4],4PQG_B Crystal structure of the pneumococcal O-GlcNAc transferase GtfA in complex with UDP and GlcNAc [Streptococcus pneumoniae TIGR4]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P37287 1.07e-11 134 295 181 344
Phosphatidylinositol N-acetylglucosaminyltransferase subunit A OS=Homo sapiens OX=9606 GN=PIGA PE=1 SV=1
Q64323 1.04e-09 134 295 181 345
Phosphatidylinositol N-acetylglucosaminyltransferase subunit A OS=Mus musculus OX=10090 GN=Piga PE=2 SV=1
Q59002 1.95e-08 186 302 216 333
Uncharacterized glycosyltransferase MJ1607 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) OX=243232 GN=MJ1607 PE=3 SV=1
Q65CC7 1.43e-07 167 317 203 352
Alpha-D-kanosaminyltransferase OS=Streptomyces kanamyceticus OX=1967 GN=kanE PE=1 SV=1
P54490 3.11e-07 156 286 150 285
Uncharacterized glycosyltransferase YqgM OS=Bacillus subtilis (strain 168) OX=224308 GN=yqgM PE=3 SV=2

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000050 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000003399_02596.