logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000003359_00644

You are here: Home > Sequence: MGYG000003359_00644

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Paenibacillus_A sp900766135
Lineage Bacteria; Firmicutes; Bacilli; Paenibacillales; Paenibacillaceae; Paenibacillus_A; Paenibacillus_A sp900766135
CAZyme ID MGYG000003359_00644
CAZy Family GH13
CAZyme Description Alpha-amylase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
569 MGYG000003359_4|CGC2 62404.05 4.4382
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000003359 5721146 MAG United States North America
Gene Location Start: 74491;  End: 76200  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

EC 3.2.1.1 3.2.1.54

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 93 423 1.4e-131 0.9936305732484076

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd11316 AmyAc_bac2_AmyA 0.0 75 491 2 403
Alpha amylase catalytic domain found in bacterial Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes Chloroflexi, Dictyoglomi, and Fusobacteria. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd11333 AmyAc_SI_OligoGlu_DGase 8.54e-129 73 483 2 427
Alpha amylase catalytic domain found in Sucrose isomerases, oligo-1,6-glucosidase (also called isomaltase; sucrase-isomaltase; alpha-limit dextrinase), dextran glucosidase (also called glucan 1,6-alpha-glucosidase), and related proteins. The sucrose isomerases (SIs) Isomaltulose synthase (EC 5.4.99.11) and Trehalose synthase (EC 5.4.99.16) catalyze the isomerization of sucrose and maltose to produce isomaltulose and trehalulose, respectively. Oligo-1,6-glucosidase (EC 3.2.1.10) hydrolyzes the alpha-1,6-glucosidic linkage of isomaltooligosaccharides, pannose, and dextran. Unlike alpha-1,4-glucosidases (EC 3.2.1.20), it fails to hydrolyze the alpha-1,4-glucosidic bonds of maltosaccharides. Dextran glucosidase (DGase, EC 3.2.1.70) hydrolyzes alpha-1,6-glucosidic linkages at the non-reducing end of panose, isomaltooligosaccharides and dextran to produce alpha-glucose.The common reaction chemistry of the alpha-amylase family enzymes is based on a two-step acid catalytic mechanism that requires two critical carboxylates: one acting as a general acid/base (Glu) and the other as a nucleophile (Asp). Both hydrolysis and transglycosylation proceed via the nucleophilic substitution reaction between the anomeric carbon, C1 and a nucleophile. Both enzymes contain the three catalytic residues (Asp, Glu and Asp) common to the alpha-amylase family as well as two histidine residues which are predicted to be critical to binding the glucose residue adjacent to the scissile bond in the substrates. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd11334 AmyAc_TreS 2.00e-112 72 482 3 447
Alpha amylase catalytic domain found in Trehalose synthetase. Trehalose synthetase (TreS) catalyzes the reversible interconversion of trehalose and maltose. The enzyme catalyzes the reaction in both directions, but the preferred substrate is maltose. Glucose is formed as a by-product of this reaction. It is believed that the catalytic mechanism may involve the cutting of the incoming disaccharide and transfer of a glucose to an enzyme-bound glucose. This enzyme also catalyzes production of a glucosamine disaccharide from maltose and glucosamine. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
TIGR02456 treS_nterm 9.53e-106 73 531 5 498
trehalose synthase. Trehalose synthase interconverts maltose and alpha, alpha-trehalose by transglucosylation. This is one of at least three mechanisms for biosynthesis of trehalose, an important and widespread compatible solute. However, it is not driven by phosphate activation of sugars and its physiological role may tend toward trehalose degradation. This view is accentuated by numerous examples of fusion to a probable maltokinase domain. The sequence region described by this model is found both as the whole of a trehalose synthase and as the N-terminal region of a larger fusion protein that includes trehalose synthase activity. Several of these fused trehalose synthases have a domain homologous to proteins with maltokinase activity from Actinoplanes missouriensis and Streptomyces coelicolor (). [Energy metabolism, Biosynthesis and degradation of polysaccharides]
COG0366 AmyA 6.75e-103 74 533 1 495
Glycosidase [Carbohydrate transport and metabolism].

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AWV34154.1 7.45e-261 17 569 19 568
AIQ74836.1 7.47e-259 17 569 12 560
AIQ36212.1 1.07e-257 20 569 22 566
AIQ24404.1 1.16e-256 8 569 10 564
QSF42742.1 1.14e-254 1 569 3 575

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1WZA_A 7.76e-160 76 569 7 486
Crystalstructure of alpha-amylase from H.orenii [Halothermothrix orenii]
7JJT_A 1.74e-87 53 569 5 521
ChainA, Alpha-amylase [Ruminococcus bromii]
7JJN_A 3.89e-86 77 569 38 522
ChainA, Glycosidases [[Eubacterium] rectale DSM 17629],7JJN_B Chain B, Glycosidases [[Eubacterium] rectale DSM 17629]
5M99_B 3.62e-84 75 520 6 452
FunctionalCharacterization and Crystal Structure of Thermostable Amylase from Thermotoga petrophila, reveals High Thermostability and an Archaic form of Dimerization [Thermotoga petrophila RKU-1]
5M99_A 3.72e-84 75 520 7 453
FunctionalCharacterization and Crystal Structure of Thermostable Amylase from Thermotoga petrophila, reveals High Thermostability and an Archaic form of Dimerization [Thermotoga petrophila RKU-1]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P20845 6.01e-175 61 569 32 520
Alpha-amylase OS=Priestia megaterium OX=1404 PE=1 SV=1
P14899 9.82e-150 73 569 34 497
Alpha-amylase 3 OS=Dictyoglomus thermophilum (strain ATCC 35947 / DSM 3960 / H-6-12) OX=309799 GN=amyC PE=3 SV=2
P29094 1.63e-77 75 533 10 522
Oligo-1,6-glucosidase OS=Parageobacillus thermoglucosidasius OX=1426 GN=malL PE=1 SV=1
O86956 4.87e-75 77 528 4 429
4-alpha-glucanotransferase OS=Thermotoga neapolitana OX=2337 GN=mgtA PE=1 SV=1
P80099 6.65e-75 77 528 4 428
4-alpha-glucanotransferase OS=Thermotoga maritima (strain ATCC 43589 / DSM 3109 / JCM 10099 / NBRC 100826 / MSB8) OX=243274 GN=mgtA PE=1 SV=2

SignalP and Lipop Annotations help

This protein is predicted as LIPO

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
0.000008 0.000110 0.999911 0.000002 0.000001 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000003359_00644.