logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000003252_02440

You are here: Home > Sequence: MGYG000003252_02440

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Bacteroides sp900761785
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroides; Bacteroides sp900761785
CAZyme ID MGYG000003252_02440
CAZy Family GH130
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
690 MGYG000003252_213|CGC1 76947.78 4.5031
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000003252 8296673 MAG United States North America
Gene Location Start: 5911;  End: 7983  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

EC 3.2.1.-

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH43 391 670 1.5e-107 0.9928571428571429
GH130 69 379 9.3e-86 0.9222972972972973

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd18827 GH43_XlnD-like 0.0 399 675 1 277
Glycosyl hydrolase family 43 protein such as Aspergillus niger DMS1957 xylanase D (XlnD); includes mostly xylanases. This glycosyl hydrolase family 43 (GH43) subgroup includes enzymes that have mostly been annotated as xylanases (endo-alpha-L-arabinanase, EC 3.2.1.8). It belongs to the GH43_bXyl-like subgroup of the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. The GH43_bXyl-like subgroup includes enzymes that have been annotated as xylan-digesting beta-xylosidases (EC 3.2.1.37) and xylanases, as well the Bacteroides thetaiotaomicron VPI-5482 alpha-L-arabinofuranosidases (EC 3.2.1.55) (BT3675;BT_3675) and (BT3662;BT_3662). GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
cd18610 GH130_BT3780-like 1.11e-170 64 378 1 301
Glycosyl hydrolase family 130, such as beta-mammosidase BT3780 and BACOVA_03624. This subfamily contains glycosyl hydrolase family 130, as classified by the carbohydrate-active enzymes database (CAZY), and includes Bacteroides enzymes, BT3780 and BACOVA_03624. Members of this family possess 5-bladed beta-propeller domains similar to families 32, 43, 62, 68, 117 (GH32, GH43, GH62, GH68, GH117). GH130 enzymes are involved in the bacterial utilization of mannans or N-linked glycans. GH130 enzymes have also been shown to target beta-1,2- and beta-1,4-mannosidic linkages where these phosphorylases mediate bond cleavage by a single displacement reaction in which phosphate functions as the catalytic nucleophile. However, some lack the conserved basic residues that bind the phosphate nucleophile, as observed for the Bacteroides enzymes, BT3780 and BACOVA_03624, which are indeed beta-mannosidases that hydrolyze beta-1,2-mannosidic linkages through an inverting mechanism.
cd09004 GH43_bXyl-like 1.60e-108 399 675 1 266
Glycosyl hydrolase family 43 protein such as Bacteroides thetaiotaomicron VPI-5482 alpha-L-arabinofuranosidases (BT3675;BT_3675) and (BT3662;BT_3662); includes mostly xylanases. This glycosyl hydrolase family 43 (GH43) subgroup includes enzymes that have been annotated as xylan-digesting beta-xylosidase (EC 3.2.1.37) and xylanase (endo-alpha-L-arabinanase, EC 3.2.1.8) activities, as well the Bacteroides thetaiotaomicron VPI-5482 alpha-L-arabinofuranosidases (EC 3.2.1.55) (BT3675;BT_3675) and (BT3662;BT_3662). It belongs to the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
cd18607 GH130 1.07e-96 73 378 1 269
Glycoside hydrolase family 130. Members of the glycosyl hydrolase family 130, as classified by the carbohydrate-active enzymes database (CAZY), are phosphorylases and hydrolases for beta-mannosides, and include beta-1,4-mannosylglucose phosphorylase (EC 2.4.1.281), beta-1,4-mannooligosaccharide phosphorylase (EC 2.4.1.319), beta-1,4-mannosyl-N-acetyl-glucosamine phosphorylase (EC 2.4.1.320), beta-1,2-mannobiose phosphorylase (EC 2.4.1.-), beta-1,2-oligomannan phosphorylase (EC 2.4.1.-) and beta-1,2-mannosidase (EC 3.2.1.-). They possess 5-bladed beta-propeller domains similar to families 32, 43, 62, 68, 117 (GH32, GH43, GH62, GH68, GH117). GH130 enzymes are involved in the bacterial utilization of mannans or N-linked glycans. Beta-1,4-mannosylglucose phosphorylase is involved in degradation of beta-1,4-D-mannosyl-N-acetyl-D-glucosamine linkages in the core of N-glycans; it produces alpha-mannose 1-phosphate and glucose from 4-O-beta-D-mannosyl-D-glucose and inorganic phosphate, using a critical catalytic Asp as a proton donor.
cd08990 GH43_AXH_like 5.91e-80 399 674 1 269
Glycosyl hydrolase family 43 protein, includes arabinoxylan arabinofuranohydrolase, beta-xylosidase, endo-1,4-beta-xylanase, and alpha-L-arabinofuranosidase. This subgroup includes Bacillus subtilis arabinoxylan arabinofuranohydrolase (XynD;BsAXH-m23;BSU18160), Butyrivibrio proteoclasticus alpha-L-arabinofuranosidase (Xsa43E;bpr_I2319), Clostridium stercorarium alpha-L-arabinofuranosidase XylA, and metagenomic beta-xylosidase (EC 3.2.1.37) / alpha-L-arabinofuranosidase (EC 3.2.1.55) CoXyl43. It belongs to the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. The GH43_AXH-like subgroup includes enzymes that have been characterized with beta-xylosidase, alpha-L-arabinofuranosidase, endo-alpha-L-arabinanase as well as arabinoxylan arabinofuranohydrolase (AXH) activities. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. AXHs specifically hydrolyze the glycosidic bond between arabinofuranosyl substituents and xylopyranosyl backbone residues of arabinoxylan. Metagenomic beta-xylosidase/alpha-L-arabinofuranosidase CoXyl43 shows synergy with Trichoderma reesei cellulases and promotes plant biomass saccharification by degrading xylo-oligosaccharides, such as xylobiose and xylotriose, into the monosaccharide xylose. Studies show that the hydrolytic activity of CoXyl43 is stimulated in the presence of calcium. Several of these enzymes also contain carbohydrate binding modules (CBMs) that bind cellulose or xylan. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QDM11657.1 4.19e-228 13 377 7 371
QUT78096.1 4.19e-228 13 377 7 371
QRM98548.1 4.84e-227 13 377 7 371
QUT32857.1 1.96e-226 13 377 7 371
CBK68185.1 1.96e-226 13 377 7 371

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
3R67_A 1.11e-216 30 377 3 350
Crystalstructure of a putative glycosidase (BT_4094) from BACTEROIDES THETAIOTAOMICRON VPI-5482 at 2.30 A resolution [Bacteroides thetaiotaomicron VPI-5482],3R67_B Crystal structure of a putative glycosidase (BT_4094) from BACTEROIDES THETAIOTAOMICRON VPI-5482 at 2.30 A resolution [Bacteroides thetaiotaomicron VPI-5482],3R67_C Crystal structure of a putative glycosidase (BT_4094) from BACTEROIDES THETAIOTAOMICRON VPI-5482 at 2.30 A resolution [Bacteroides thetaiotaomicron VPI-5482],3R67_D Crystal structure of a putative glycosidase (BT_4094) from BACTEROIDES THETAIOTAOMICRON VPI-5482 at 2.30 A resolution [Bacteroides thetaiotaomicron VPI-5482]
3TAW_A 1.06e-176 39 383 12 355
Crystalstructure of a putative glycoside hydrolase (BDI_3141) from Parabacteroides distasonis ATCC 8503 at 1.70 A resolution [Parabacteroides distasonis ATCC 8503]
5A7V_A 8.38e-169 30 377 30 374
TheGH130 family of mannoside phosphorylases contains glycoside hydrolases that target beta-1,2 mannosidic linkages in Candida mannan [Bacteroides thetaiotaomicron]
5A7V_B 8.38e-169 30 377 30 374
TheGH130 family of mannoside phosphorylases contains glycoside hydrolases that target beta-1,2 mannosidic linkages in Candida mannan [Bacteroides thetaiotaomicron]
3QC2_A 2.31e-167 34 377 9 351
Crystalstructure of a glycosyl hydrolase (BACOVA_03624) from Bacteroides ovatus at 2.30 A resolution [Bacteroides ovatus ATCC 8483],3QC2_B Crystal structure of a glycosyl hydrolase (BACOVA_03624) from Bacteroides ovatus at 2.30 A resolution [Bacteroides ovatus ATCC 8483]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
B0K2C2 3.90e-34 73 379 21 290
1,2-beta-oligomannan phosphorylase OS=Thermoanaerobacter sp. (strain X514) OX=399726 GN=Teth514_1788 PE=1 SV=1
B0K2C3 3.48e-28 73 380 21 297
Beta-1,2-mannobiose phosphorylase OS=Thermoanaerobacter sp. (strain X514) OX=399726 GN=Teth514_1789 PE=1 SV=1
P48791 1.31e-24 393 676 6 319
Beta-xylosidase OS=Prevotella ruminicola OX=839 GN=xynB PE=3 SV=1
P49943 1.62e-23 386 681 1 322
Xylosidase/arabinosidase OS=Bacteroides ovatus OX=28116 GN=xsa PE=2 SV=1
Q45071 1.90e-21 364 682 14 372
Arabinoxylan arabinofuranohydrolase OS=Bacillus subtilis (strain 168) OX=224308 GN=xynD PE=1 SV=2

SignalP and Lipop Annotations help

This protein is predicted as LIPO

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
0.000000 0.000218 0.999840 0.000000 0.000000 0.000000

TMHMM  Annotations      download full data without filtering help

start end
5 24