Species | Bacteroides sp900761785 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroides; Bacteroides sp900761785 | |||||||||||
CAZyme ID | MGYG000003252_02440 | |||||||||||
CAZy Family | GH130 | |||||||||||
CAZyme Description | hypothetical protein | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 5911; End: 7983 Strand: - |
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GH43 | 391 | 670 | 1.5e-107 | 0.9928571428571429 |
GH130 | 69 | 379 | 9.3e-86 | 0.9222972972972973 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
cd18827 | GH43_XlnD-like | 0.0 | 399 | 675 | 1 | 277 | Glycosyl hydrolase family 43 protein such as Aspergillus niger DMS1957 xylanase D (XlnD); includes mostly xylanases. This glycosyl hydrolase family 43 (GH43) subgroup includes enzymes that have mostly been annotated as xylanases (endo-alpha-L-arabinanase, EC 3.2.1.8). It belongs to the GH43_bXyl-like subgroup of the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. The GH43_bXyl-like subgroup includes enzymes that have been annotated as xylan-digesting beta-xylosidases (EC 3.2.1.37) and xylanases, as well the Bacteroides thetaiotaomicron VPI-5482 alpha-L-arabinofuranosidases (EC 3.2.1.55) (BT3675;BT_3675) and (BT3662;BT_3662). GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. |
cd18610 | GH130_BT3780-like | 1.11e-170 | 64 | 378 | 1 | 301 | Glycosyl hydrolase family 130, such as beta-mammosidase BT3780 and BACOVA_03624. This subfamily contains glycosyl hydrolase family 130, as classified by the carbohydrate-active enzymes database (CAZY), and includes Bacteroides enzymes, BT3780 and BACOVA_03624. Members of this family possess 5-bladed beta-propeller domains similar to families 32, 43, 62, 68, 117 (GH32, GH43, GH62, GH68, GH117). GH130 enzymes are involved in the bacterial utilization of mannans or N-linked glycans. GH130 enzymes have also been shown to target beta-1,2- and beta-1,4-mannosidic linkages where these phosphorylases mediate bond cleavage by a single displacement reaction in which phosphate functions as the catalytic nucleophile. However, some lack the conserved basic residues that bind the phosphate nucleophile, as observed for the Bacteroides enzymes, BT3780 and BACOVA_03624, which are indeed beta-mannosidases that hydrolyze beta-1,2-mannosidic linkages through an inverting mechanism. |
cd09004 | GH43_bXyl-like | 1.60e-108 | 399 | 675 | 1 | 266 | Glycosyl hydrolase family 43 protein such as Bacteroides thetaiotaomicron VPI-5482 alpha-L-arabinofuranosidases (BT3675;BT_3675) and (BT3662;BT_3662); includes mostly xylanases. This glycosyl hydrolase family 43 (GH43) subgroup includes enzymes that have been annotated as xylan-digesting beta-xylosidase (EC 3.2.1.37) and xylanase (endo-alpha-L-arabinanase, EC 3.2.1.8) activities, as well the Bacteroides thetaiotaomicron VPI-5482 alpha-L-arabinofuranosidases (EC 3.2.1.55) (BT3675;BT_3675) and (BT3662;BT_3662). It belongs to the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. |
cd18607 | GH130 | 1.07e-96 | 73 | 378 | 1 | 269 | Glycoside hydrolase family 130. Members of the glycosyl hydrolase family 130, as classified by the carbohydrate-active enzymes database (CAZY), are phosphorylases and hydrolases for beta-mannosides, and include beta-1,4-mannosylglucose phosphorylase (EC 2.4.1.281), beta-1,4-mannooligosaccharide phosphorylase (EC 2.4.1.319), beta-1,4-mannosyl-N-acetyl-glucosamine phosphorylase (EC 2.4.1.320), beta-1,2-mannobiose phosphorylase (EC 2.4.1.-), beta-1,2-oligomannan phosphorylase (EC 2.4.1.-) and beta-1,2-mannosidase (EC 3.2.1.-). They possess 5-bladed beta-propeller domains similar to families 32, 43, 62, 68, 117 (GH32, GH43, GH62, GH68, GH117). GH130 enzymes are involved in the bacterial utilization of mannans or N-linked glycans. Beta-1,4-mannosylglucose phosphorylase is involved in degradation of beta-1,4-D-mannosyl-N-acetyl-D-glucosamine linkages in the core of N-glycans; it produces alpha-mannose 1-phosphate and glucose from 4-O-beta-D-mannosyl-D-glucose and inorganic phosphate, using a critical catalytic Asp as a proton donor. |
cd08990 | GH43_AXH_like | 5.91e-80 | 399 | 674 | 1 | 269 | Glycosyl hydrolase family 43 protein, includes arabinoxylan arabinofuranohydrolase, beta-xylosidase, endo-1,4-beta-xylanase, and alpha-L-arabinofuranosidase. This subgroup includes Bacillus subtilis arabinoxylan arabinofuranohydrolase (XynD;BsAXH-m23;BSU18160), Butyrivibrio proteoclasticus alpha-L-arabinofuranosidase (Xsa43E;bpr_I2319), Clostridium stercorarium alpha-L-arabinofuranosidase XylA, and metagenomic beta-xylosidase (EC 3.2.1.37) / alpha-L-arabinofuranosidase (EC 3.2.1.55) CoXyl43. It belongs to the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. The GH43_AXH-like subgroup includes enzymes that have been characterized with beta-xylosidase, alpha-L-arabinofuranosidase, endo-alpha-L-arabinanase as well as arabinoxylan arabinofuranohydrolase (AXH) activities. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. AXHs specifically hydrolyze the glycosidic bond between arabinofuranosyl substituents and xylopyranosyl backbone residues of arabinoxylan. Metagenomic beta-xylosidase/alpha-L-arabinofuranosidase CoXyl43 shows synergy with Trichoderma reesei cellulases and promotes plant biomass saccharification by degrading xylo-oligosaccharides, such as xylobiose and xylotriose, into the monosaccharide xylose. Studies show that the hydrolytic activity of CoXyl43 is stimulated in the presence of calcium. Several of these enzymes also contain carbohydrate binding modules (CBMs) that bind cellulose or xylan. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
QDM11657.1 | 4.19e-228 | 13 | 377 | 7 | 371 |
QUT78096.1 | 4.19e-228 | 13 | 377 | 7 | 371 |
QRM98548.1 | 4.84e-227 | 13 | 377 | 7 | 371 |
QUT32857.1 | 1.96e-226 | 13 | 377 | 7 | 371 |
CBK68185.1 | 1.96e-226 | 13 | 377 | 7 | 371 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
3R67_A | 1.11e-216 | 30 | 377 | 3 | 350 | Crystalstructure of a putative glycosidase (BT_4094) from BACTEROIDES THETAIOTAOMICRON VPI-5482 at 2.30 A resolution [Bacteroides thetaiotaomicron VPI-5482],3R67_B Crystal structure of a putative glycosidase (BT_4094) from BACTEROIDES THETAIOTAOMICRON VPI-5482 at 2.30 A resolution [Bacteroides thetaiotaomicron VPI-5482],3R67_C Crystal structure of a putative glycosidase (BT_4094) from BACTEROIDES THETAIOTAOMICRON VPI-5482 at 2.30 A resolution [Bacteroides thetaiotaomicron VPI-5482],3R67_D Crystal structure of a putative glycosidase (BT_4094) from BACTEROIDES THETAIOTAOMICRON VPI-5482 at 2.30 A resolution [Bacteroides thetaiotaomicron VPI-5482] |
3TAW_A | 1.06e-176 | 39 | 383 | 12 | 355 | Crystalstructure of a putative glycoside hydrolase (BDI_3141) from Parabacteroides distasonis ATCC 8503 at 1.70 A resolution [Parabacteroides distasonis ATCC 8503] |
5A7V_A | 8.38e-169 | 30 | 377 | 30 | 374 | TheGH130 family of mannoside phosphorylases contains glycoside hydrolases that target beta-1,2 mannosidic linkages in Candida mannan [Bacteroides thetaiotaomicron] |
5A7V_B | 8.38e-169 | 30 | 377 | 30 | 374 | TheGH130 family of mannoside phosphorylases contains glycoside hydrolases that target beta-1,2 mannosidic linkages in Candida mannan [Bacteroides thetaiotaomicron] |
3QC2_A | 2.31e-167 | 34 | 377 | 9 | 351 | Crystalstructure of a glycosyl hydrolase (BACOVA_03624) from Bacteroides ovatus at 2.30 A resolution [Bacteroides ovatus ATCC 8483],3QC2_B Crystal structure of a glycosyl hydrolase (BACOVA_03624) from Bacteroides ovatus at 2.30 A resolution [Bacteroides ovatus ATCC 8483] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
B0K2C2 | 3.90e-34 | 73 | 379 | 21 | 290 | 1,2-beta-oligomannan phosphorylase OS=Thermoanaerobacter sp. (strain X514) OX=399726 GN=Teth514_1788 PE=1 SV=1 |
B0K2C3 | 3.48e-28 | 73 | 380 | 21 | 297 | Beta-1,2-mannobiose phosphorylase OS=Thermoanaerobacter sp. (strain X514) OX=399726 GN=Teth514_1789 PE=1 SV=1 |
P48791 | 1.31e-24 | 393 | 676 | 6 | 319 | Beta-xylosidase OS=Prevotella ruminicola OX=839 GN=xynB PE=3 SV=1 |
P49943 | 1.62e-23 | 386 | 681 | 1 | 322 | Xylosidase/arabinosidase OS=Bacteroides ovatus OX=28116 GN=xsa PE=2 SV=1 |
Q45071 | 1.90e-21 | 364 | 682 | 14 | 372 | Arabinoxylan arabinofuranohydrolase OS=Bacillus subtilis (strain 168) OX=224308 GN=xynD PE=1 SV=2 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
0.000000 | 0.000218 | 0.999840 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.