logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000003174_00366

You are here: Home > Sequence: MGYG000003174_00366

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Collinsella sp900542125
Lineage Bacteria; Actinobacteriota; Coriobacteriia; Coriobacteriales; Coriobacteriaceae; Collinsella; Collinsella sp900542125
CAZyme ID MGYG000003174_00366
CAZy Family GH13
CAZyme Description Trehalose-6-phosphate hydrolase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
196 MGYG000003174_8|CGC1 21801.27 4.4257
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000003174 2220706 MAG United States North America
Gene Location Start: 1338;  End: 1928  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000003174_00366.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 34 196 7.4e-89 0.4575342465753425

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd11332 AmyAc_OligoGlu_TS 6.87e-127 10 196 1 192
Alpha amylase catalytic domain found in oligo-1,6-glucosidase (also called isomaltase; sucrase-isomaltase; alpha-limit dextrinase), trehalose synthase (also called maltose alpha-D-glucosyltransferase), and related proteins. Oligo-1,6-glucosidase (EC 3.2.1.10) hydrolyzes the alpha-1,6-glucosidic linkage of isomaltooligosaccharides, pannose, and dextran. Unlike alpha-1,4-glucosidases (EC 3.2.1.20), it fails to hydrolyze the alpha-1,4-glucosidic bonds of maltosaccharides. Trehalose synthase (EC 5.4.99.16) catalyzes the isomerization of maltose to produce trehalulose. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd11333 AmyAc_SI_OligoGlu_DGase 7.24e-97 14 196 2 181
Alpha amylase catalytic domain found in Sucrose isomerases, oligo-1,6-glucosidase (also called isomaltase; sucrase-isomaltase; alpha-limit dextrinase), dextran glucosidase (also called glucan 1,6-alpha-glucosidase), and related proteins. The sucrose isomerases (SIs) Isomaltulose synthase (EC 5.4.99.11) and Trehalose synthase (EC 5.4.99.16) catalyze the isomerization of sucrose and maltose to produce isomaltulose and trehalulose, respectively. Oligo-1,6-glucosidase (EC 3.2.1.10) hydrolyzes the alpha-1,6-glucosidic linkage of isomaltooligosaccharides, pannose, and dextran. Unlike alpha-1,4-glucosidases (EC 3.2.1.20), it fails to hydrolyze the alpha-1,4-glucosidic bonds of maltosaccharides. Dextran glucosidase (DGase, EC 3.2.1.70) hydrolyzes alpha-1,6-glucosidic linkages at the non-reducing end of panose, isomaltooligosaccharides and dextran to produce alpha-glucose.The common reaction chemistry of the alpha-amylase family enzymes is based on a two-step acid catalytic mechanism that requires two critical carboxylates: one acting as a general acid/base (Glu) and the other as a nucleophile (Asp). Both hydrolysis and transglycosylation proceed via the nucleophilic substitution reaction between the anomeric carbon, C1 and a nucleophile. Both enzymes contain the three catalytic residues (Asp, Glu and Asp) common to the alpha-amylase family as well as two histidine residues which are predicted to be critical to binding the glucose residue adjacent to the scissile bond in the substrates. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd11331 AmyAc_OligoGlu_like 1.87e-87 10 196 1 185
Alpha amylase catalytic domain found in oligo-1,6-glucosidase (also called isomaltase; sucrase-isomaltase; alpha-limit dextrinase) and related proteins. Oligo-1,6-glucosidase (EC 3.2.1.10) hydrolyzes the alpha-1,6-glucosidic linkage of isomalto-oligosaccharides, pannose, and dextran. Unlike alpha-1,4-glucosidases (EC 3.2.1.20), it fails to hydrolyze the alpha-1,4-glucosidic bonds of maltosaccharides. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd11328 AmyAc_maltase 3.51e-86 11 196 4 190
Alpha amylase catalytic domain found in maltase (also known as alpha glucosidase) and related proteins. Maltase (EC 3.2.1.20) hydrolyzes the terminal, non-reducing (1->4)-linked alpha-D-glucose residues in maltose, releasing alpha-D-glucose. In most cases, maltase is equivalent to alpha-glucosidase, but the term "maltase" emphasizes the disaccharide nature of the substrate from which glucose is cleaved, and the term "alpha-glucosidase" emphasizes the bond, whether the substrate is a disaccharide or polysaccharide. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
PRK10933 PRK10933 1.84e-83 10 196 6 188
trehalose-6-phosphate hydrolase; Provisional

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QIA32881.1 8.51e-143 1 196 1 196
ATP54838.1 1.45e-133 12 196 1 185
AZH70602.1 4.12e-133 12 196 1 185
BAR05593.1 1.28e-104 4 196 23 215
AKV54985.1 8.17e-103 11 196 20 205

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
7VOH_A 2.36e-55 6 196 2 190
ChainA, alpha-glucosidase QsGH13 [Qipengyuania seohaensis],7VOH_B Chain B, alpha-glucosidase QsGH13 [Qipengyuania seohaensis]
6K5P_A 1.60e-54 8 196 28 213
Structureof mosquito-larvicidal Binary toxin receptor, Cqm1 [Culex quinquefasciatus],6K5P_B Structure of mosquito-larvicidal Binary toxin receptor, Cqm1 [Culex quinquefasciatus],6K5P_C Structure of mosquito-larvicidal Binary toxin receptor, Cqm1 [Culex quinquefasciatus],6K5P_D Structure of mosquito-larvicidal Binary toxin receptor, Cqm1 [Culex quinquefasciatus]
2PWF_A 2.89e-54 10 196 4 187
ChainA, Sucrose isomerase [Paraburkholderia acidicola],2PWF_B Chain B, Sucrose isomerase [Paraburkholderia acidicola],2PWF_C Chain C, Sucrose isomerase [Paraburkholderia acidicola],2PWF_D Chain D, Sucrose isomerase [Paraburkholderia acidicola]
2PWE_A 2.89e-54 10 196 4 187
ChainA, Sucrose isomerase [Paraburkholderia acidicola],2PWE_B Chain B, Sucrose isomerase [Paraburkholderia acidicola]
2PWG_A 2.89e-54 10 196 4 187
ChainA, Sucrose isomerase [Burkholderia ubonensis subsp. mesacidophila],2PWG_B Chain B, Sucrose isomerase [Burkholderia ubonensis subsp. mesacidophila],2PWH_A Chain A, Sucrose isomerase [Burkholderia ubonensis subsp. mesacidophila],2PWH_B Chain B, Sucrose isomerase [Burkholderia ubonensis subsp. mesacidophila]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P28904 2.32e-62 11 188 7 180
Trehalose-6-phosphate hydrolase OS=Escherichia coli (strain K12) OX=83333 GN=treC PE=1 SV=3
Q59905 5.20e-56 9 196 3 182
Glucan 1,6-alpha-glucosidase OS=Streptococcus dysgalactiae subsp. equisimilis OX=119602 GN=dexB PE=3 SV=1
Q95WY5 5.60e-56 1 196 20 212
Alpha-glucosidase OS=Culex pipiens OX=7175 GN=CPM1 PE=1 SV=1
Q17058 2.53e-54 14 196 29 211
Alpha-glucosidase OS=Apis mellifera OX=7460 PE=1 SV=1
P39795 1.28e-52 5 196 2 191
Trehalose-6-phosphate hydrolase OS=Bacillus subtilis (strain 168) OX=224308 GN=treA PE=1 SV=2

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000060 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000003174_00366.