Species | Cutibacterium granulosum | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Actinobacteriota; Actinomycetia; Propionibacteriales; Propionibacteriaceae; Cutibacterium; Cutibacterium granulosum | |||||||||||
CAZyme ID | MGYG000003135_00354 | |||||||||||
CAZy Family | GT4 | |||||||||||
CAZyme Description | Glycosyltransferase Gtf1 | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 447767; End: 449200 Strand: + |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
cd04946 | GT4_AmsK-like | 1.38e-66 | 69 | 468 | 2 | 401 | amylovoran biosynthesis glycosyltransferase AmsK and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. AmsK is involved in the biosynthesis of amylovoran, which functions as a virulence factor. It functions as a glycosyl transferase which transfers galactose from UDP-galactose to a lipid-linked amylovoran-subunit precursor. The members of this family are found mainly in bacteria and Archaea. |
cd03801 | GT4_PimA-like | 1.91e-26 | 150 | 473 | 41 | 364 | phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea. |
COG0438 | RfaB | 8.19e-25 | 141 | 473 | 37 | 373 | Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]. |
pfam00534 | Glycos_transf_1 | 6.24e-23 | 294 | 454 | 1 | 156 | Glycosyl transferases group 1. Mutations in this domain of PIGA lead to disease (Paroxysmal Nocturnal haemoglobinuria). Members of this family transfer activated sugars to a variety of substrates, including glycogen, Fructose-6-phosphate and lipopolysaccharides. Members of this family transfer UDP, ADP, GDP or CMP linked sugars. The eukaryotic glycogen synthases may be distant members of this family. |
cd03798 | GT4_WlbH-like | 2.12e-22 | 223 | 458 | 127 | 361 | Bordetella parapertussis WlbH and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. Staphylococcus aureus CapJ may be involved in capsule polysaccharide biosynthesis. WlbH in Bordetella parapertussis has been shown to be required for the biosynthesis of a trisaccharide that, when attached to the B. pertussis lipopolysaccharide (LPS) core (band B), generates band A LPS. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
SNV30876.1 | 0.0 | 1 | 477 | 1 | 477 |
AOG28226.1 | 4.33e-147 | 67 | 474 | 43 | 455 |
AXE39987.1 | 2.31e-146 | 67 | 476 | 7 | 423 |
QRH10188.1 | 4.96e-146 | 67 | 474 | 43 | 455 |
AFV88310.1 | 6.08e-146 | 67 | 476 | 7 | 431 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
4XYW_A | 7.56e-08 | 298 | 447 | 182 | 319 | GlycosyltransferasesWbnH [Escherichia coli] |
4PQG_A | 9.99e-06 | 285 | 407 | 318 | 433 | Crystalstructure of the pneumococcal O-GlcNAc transferase GtfA in complex with UDP and GlcNAc [Streptococcus pneumoniae TIGR4],4PQG_B Crystal structure of the pneumococcal O-GlcNAc transferase GtfA in complex with UDP and GlcNAc [Streptococcus pneumoniae TIGR4] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
P26388 | 3.34e-12 | 68 | 460 | 2 | 393 | Putative colanic acid biosynthesis glycosyltransferase WcaL OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) OX=99287 GN=wcaL PE=3 SV=1 |
O32272 | 5.48e-12 | 185 | 462 | 105 | 373 | Putative teichuronic acid biosynthesis glycosyltransferase TuaC OS=Bacillus subtilis (strain 168) OX=224308 GN=tuaC PE=2 SV=1 |
P71243 | 5.94e-12 | 194 | 460 | 121 | 393 | Putative colanic acid biosynthesis glycosyltransferase WcaL OS=Escherichia coli (strain K12) OX=83333 GN=wcaL PE=3 SV=2 |
P87172 | 5.03e-10 | 285 | 458 | 176 | 363 | Phosphatidylinositol N-acetylglucosaminyltransferase gpi3 subunit OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) OX=284812 GN=gpi3 PE=3 SV=1 |
Q94BX4 | 1.05e-07 | 253 | 433 | 158 | 334 | Phosphatidylinositol N-acetylglucosaminyltransferase subunit A OS=Arabidopsis thaliana OX=3702 GN=PIGA PE=2 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000053 | 0.000001 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.