logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000003107_01322

You are here: Home > Sequence: MGYG000003107_01322

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Collinsella sp900541245
Lineage Bacteria; Actinobacteriota; Coriobacteriia; Coriobacteriales; Coriobacteriaceae; Collinsella; Collinsella sp900541245
CAZyme ID MGYG000003107_01322
CAZy Family GT4
CAZyme Description Putative glycosyltransferase EpsF
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
367 MGYG000003107_28|CGC1 40665.42 6.7159
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000003107 2129463 MAG Spain Europe
Gene Location Start: 8437;  End: 9540  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000003107_01322.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 196 300 4.9e-25 0.6625

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03812 GT4_CapH-like 2.25e-106 20 330 15 327
capsular polysaccharide biosynthesis glycosyltransferase CapH and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. capH in Staphylococcus aureus has been shown to be required for the biosynthesis of the type 1 capsular polysaccharide (CP1).
cd03807 GT4_WbnK-like 7.90e-46 76 299 71 295
Shigella dysenteriae WbnK and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. WbnK in Shigella dysenteriae has been shown to be involved in the type 7 O-antigen biosynthesis.
cd03811 GT4_GT28_WabH-like 6.75e-38 20 300 15 294
family 4 and family 28 glycosyltransferases similar to Klebsiella WabH. This family is most closely related to the GT1 family of glycosyltransferases. WabH in Klebsiella pneumoniae has been shown to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the cellular outer core.
cd03801 GT4_PimA-like 7.21e-38 20 300 17 299
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
cd03808 GT4_CapM-like 1.39e-35 51 300 42 295
capsular polysaccharide biosynthesis glycosyltransferase CapM and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. CapM in Staphylococcus aureus is required for the synthesis of type 1 capsular polysaccharides.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
ATP54862.1 5.15e-133 14 333 1 319
ALE35630.1 2.83e-132 3 363 30 395
BAF40169.1 1.09e-130 3 363 20 379
AHJ22490.1 6.74e-130 4 367 2 367
AUD96664.1 7.75e-129 4 361 2 361

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
3OKA_A 1.10e-14 103 330 105 341
Crystalstructure of Corynebacterium glutamicum PimB' in complex with GDP-Man (triclinic crystal form) [Corynebacterium glutamicum],3OKA_B Crystal structure of Corynebacterium glutamicum PimB' in complex with GDP-Man (triclinic crystal form) [Corynebacterium glutamicum]
3OKC_A 1.18e-14 103 330 105 341
Crystalstructure of Corynebacterium glutamicum PimB' bound to GDP (orthorhombic crystal form) [Corynebacterium glutamicum],3OKP_A Crystal structure of Corynebacterium glutamicum PimB' bound to GDP-Man (orthorhombic crystal form) [Corynebacterium glutamicum]
3C4Q_A 1.95e-10 164 298 192 335
Structureof the retaining glycosyltransferase MshA : The first step in mycothiol biosynthesis. Organism : Corynebacterium glutamicum- Complex with UDP [Corynebacterium glutamicum],3C4Q_B Structure of the retaining glycosyltransferase MshA : The first step in mycothiol biosynthesis. Organism : Corynebacterium glutamicum- Complex with UDP [Corynebacterium glutamicum],3C4V_A Structure of the retaining glycosyltransferase MshA:The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum : Complex with UDP and 1L-INS-1-P. [Corynebacterium glutamicum],3C4V_B Structure of the retaining glycosyltransferase MshA:The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum : Complex with UDP and 1L-INS-1-P. [Corynebacterium glutamicum]
3C48_A 2.00e-10 164 298 212 355
Structureof the retaining glycosyltransferase MshA: The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum- APO (OPEN) structure. [Corynebacterium glutamicum],3C48_B Structure of the retaining glycosyltransferase MshA: The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum- APO (OPEN) structure. [Corynebacterium glutamicum]
4XYW_A 1.12e-06 47 299 7 276
GlycosyltransferasesWbnH [Escherichia coli]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P71055 5.03e-59 6 327 7 338
Putative glycosyltransferase EpsF OS=Bacillus subtilis (strain 168) OX=224308 GN=epsF PE=2 SV=1
Q59002 4.89e-17 179 298 193 313
Uncharacterized glycosyltransferase MJ1607 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) OX=243232 GN=MJ1607 PE=3 SV=1
Q8NNK8 6.02e-14 103 330 105 341
GDP-mannose-dependent monoacylated alpha-(1-6)-phosphatidylinositol monomannoside mannosyltransferase OS=Corynebacterium glutamicum (strain ATCC 13032 / DSM 20300 / BCRC 11384 / JCM 1318 / LMG 3730 / NCIMB 10025) OX=196627 GN=pimB PE=1 SV=1
C4LLD6 1.47e-12 164 298 220 364
D-inositol 3-phosphate glycosyltransferase OS=Corynebacterium kroppenstedtii (strain DSM 44385 / JCM 11950 / CIP 105744 / CCUG 35717) OX=645127 GN=mshA PE=3 SV=1
A1UAM8 1.09e-11 17 298 34 340
D-inositol 3-phosphate glycosyltransferase OS=Mycobacterium sp. (strain KMS) OX=189918 GN=mshA PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000038 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000003107_01322.