Species | Enterococcus_A pallens | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Firmicutes; Bacilli; Lactobacillales; Enterococcaceae; Enterococcus_A; Enterococcus_A pallens | |||||||||||
CAZyme ID | MGYG000002967_00221 | |||||||||||
CAZy Family | GH4 | |||||||||||
CAZyme Description | Phospho-alpha-glucosidase PagL | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 228426; End: 229436 Strand: - |
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GH4 | 6 | 183 | 2.4e-62 | 0.9832402234636871 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
cd05298 | GH4_GlvA_pagL_like | 0.0 | 4 | 336 | 1 | 332 | Glycoside Hydrolases Family 4; GlvA- and pagL-like glycosidases. Bacillus subtilis GlvA and Clostridium acetobutylicum pagL are 6-phospho-alpha-glucosidase, catalyzing the hydrolysis of alpha-glucopyranoside bonds to release glucose from oligosaccharides. The substrate specificities of other members of this subgroup are unknown. Some bacteria simultaneously translocate and phosphorylate disaccharides via the phosphoenolpyruvate-dependent phosphotransferase system (PEP_PTS). After translocation, these phospho-disaccharides may be hydrolyzed by the GH4 glycoside hydrolases, which include 6-phospho-beta-glucosidases, 6-phospho-alpha-glucosidases, alpha-glucosidases/alpha-glucuronidases (only from Thermotoga), and alpha-galactosidases. Members of this subfamily are part of the NAD(P)-binding Rossmann fold superfamily, which includes a wide variety of protein families including the NAD(P)-binding domains of alcohol dehydrogenases, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate dehydrogenases, formate/glycerate dehydrogenases, siroheme synthases, 6-phosphogluconate dehydrogenases, aminoacid dehydrogenases, repressor rex, and NAD-binding potassium channel domains, among others. |
COG1486 | CelF | 8.04e-96 | 1 | 335 | 1 | 334 | Alpha-galactosidase/6-phospho-beta-glucosidase, family 4 of glycosyl hydrolase [Carbohydrate transport and metabolism]. |
cd05197 | GH4_glycoside_hydrolases | 7.87e-83 | 4 | 334 | 1 | 327 | Glycoside Hydrases Family 4. Glycoside hydrolases cleave glycosidic bonds to release smaller sugars from oligo- or polysaccharides. Some bacteria simultaneously translocate and phosphorylate disaccharides via the phosphoenolpyruvate-dependent phosphotransferase system (PEP-PTS). After translocation, these phospho-disaccharides may be hydrolyzed by GH4 glycoside hydrolases. Other organisms (such as archaea and Thermotoga maritima) lack the PEP-PTS system, but have several enzymes normally associated with the PEP-PTS operon. GH4 family members include 6-phospho-beta-glucosidases, 6-phospho-alpha-glucosidases, alpha-glucosidases/alpha-glucuronidases (only from Thermotoga), and alpha-galactosidases. They require two cofactors, NAD+ and a divalent metal (Mn2+, Ni2+, Mg2+), for activity. Some also require reducing conditions. GH4 glycoside hydrolases are part of the NAD(P)-binding Rossmann fold superfamily, which includes a wide variety of protein families including the NAD(P)-binding domains of alcohol dehydrogenases, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate dehydrogenases, formate/glycerate dehydrogenases, siroheme synthases, 6-phosphogluconate dehydrogenases, aminoacid dehydrogenases, repressor rex, and NAD-binding potassium channel domains, among others. |
cd05296 | GH4_P_beta_glucosidase | 5.95e-79 | 6 | 298 | 3 | 280 | Glycoside Hydrolases Family 4; Phospho-beta-glucosidase. Some bacteria simultaneously translocate and phosphorylate disaccharides via the phosphoenolpyruvate-dependent phosphotransferase system (PEP-PTS). After translocation, these phospho-disaccharides may be hydrolyzed by the GH4 glycoside hydrolases such as the phospho-beta-glucosidases. Other organisms (such as archaea and Thermotoga maritima ) lack the PEP-PTS system, but have several enzymes normally associated with the PEP-PTS operon. The 6-phospho-beta-glucosidase from Thermotoga maritima hydrolylzes cellobiose 6-phosphate (6P) into glucose-6P and glucose, in an NAD+ and Mn2+ dependent fashion. The Escherichia coli 6-phospho-beta-glucosidase (also called celF) hydrolyzes a variety of phospho-beta-glucosides including cellobiose-6P, salicin-6P, arbutin-6P, and gentobiose-6P. Phospho-beta-glucosidases are part of the NAD(P)-binding Rossmann fold superfamily, which includes a wide variety of protein families including the NAD(P)-binding domains of alcohol dehydrogenases, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate dehydrogenases, formate/glycerate dehydrogenases, siroheme synthases, 6-phosphogluconate dehydrogenases, aminoacid dehydrogenases, repressor rex, and NAD-binding potassium channel domains, among others. |
pfam02056 | Glyco_hydro_4 | 4.53e-46 | 6 | 185 | 2 | 182 | Family 4 glycosyl hydrolase. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
QQV05455.1 | 3.43e-219 | 1 | 335 | 1 | 335 |
QMW76045.1 | 3.43e-219 | 1 | 335 | 1 | 335 |
QQY27565.1 | 3.43e-219 | 1 | 335 | 1 | 335 |
QPS13617.1 | 3.43e-219 | 1 | 335 | 1 | 335 |
QQK07276.1 | 3.11e-215 | 1 | 336 | 1 | 336 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
6VC6_A | 1.94e-189 | 2 | 335 | 2 | 335 | 2.1Angstrom Resolution Crystal Structure of 6-phospho-alpha-glucosidase from Gut Microorganisms in Complex with NAD and Mn2+ [Merdibacter massiliensis],6VC6_B 2.1 Angstrom Resolution Crystal Structure of 6-phospho-alpha-glucosidase from Gut Microorganisms in Complex with NAD and Mn2+ [Merdibacter massiliensis],6VC6_C 2.1 Angstrom Resolution Crystal Structure of 6-phospho-alpha-glucosidase from Gut Microorganisms in Complex with NAD and Mn2+ [Merdibacter massiliensis],6VC6_D 2.1 Angstrom Resolution Crystal Structure of 6-phospho-alpha-glucosidase from Gut Microorganisms in Complex with NAD and Mn2+ [Merdibacter massiliensis] |
1U8X_X | 2.46e-93 | 2 | 333 | 27 | 357 | CrystalStructure Of Glva From Bacillus Subtilis, A Metal-requiring, Nad-dependent 6-phospho-alpha-glucosidase [Bacillus subtilis] |
6DUX_A | 7.61e-91 | 2 | 333 | 5 | 335 | ChainA, 6-phospho-alpha-glucosidase [Klebsiella pneumoniae],6DUX_B Chain B, 6-phospho-alpha-glucosidase [Klebsiella pneumoniae],6DVV_A Chain A, 6-phospho-alpha-glucosidase [Klebsiella pneumoniae],6DVV_B Chain B, 6-phospho-alpha-glucosidase [Klebsiella pneumoniae] |
5C3M_A | 1.10e-38 | 2 | 296 | 3 | 293 | Crystalstructure of Gan4C, a GH4 6-phospho-glucosidase from Geobacillus stearothermophilus [Geobacillus stearothermophilus],5C3M_B Crystal structure of Gan4C, a GH4 6-phospho-glucosidase from Geobacillus stearothermophilus [Geobacillus stearothermophilus],5C3M_C Crystal structure of Gan4C, a GH4 6-phospho-glucosidase from Geobacillus stearothermophilus [Geobacillus stearothermophilus],5C3M_D Crystal structure of Gan4C, a GH4 6-phospho-glucosidase from Geobacillus stearothermophilus [Geobacillus stearothermophilus] |
1S6Y_A | 1.15e-37 | 2 | 296 | 6 | 296 | 2.3Acrystal structure of phospho-beta-glucosidase [Geobacillus stearothermophilus] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
Q97DP6 | 1.99e-113 | 1 | 335 | 1 | 339 | Phospho-alpha-glucosidase PagL OS=Clostridium acetobutylicum (strain ATCC 824 / DSM 792 / JCM 1419 / LMG 5710 / VKM B-1787) OX=272562 GN=pagL PE=1 SV=1 |
Q034G9 | 5.29e-101 | 2 | 333 | 5 | 336 | 6-phospho-alpha-glucosidase 2 OS=Lacticaseibacillus paracasei (strain ATCC 334 / BCRC 17002 / CCUG 31169 / CIP 107868 / KCTC 3260 / NRRL B-441) OX=321967 GN=LSEI_2684 PE=3 SV=1 |
Q03C44 | 6.96e-97 | 2 | 333 | 4 | 334 | 6-phospho-alpha-glucosidase 1 OS=Lacticaseibacillus paracasei (strain ATCC 334 / BCRC 17002 / CCUG 31169 / CIP 107868 / KCTC 3260 / NRRL B-441) OX=321967 GN=simA PE=1 SV=1 |
P54716 | 1.71e-96 | 2 | 333 | 4 | 334 | Maltose-6'-phosphate glucosidase OS=Bacillus subtilis (strain 168) OX=224308 GN=glvA PE=1 SV=1 |
Q97LM4 | 1.08e-95 | 1 | 333 | 1 | 333 | Maltose-6'-phosphate glucosidase MalH OS=Clostridium acetobutylicum (strain ATCC 824 / DSM 792 / JCM 1419 / LMG 5710 / VKM B-1787) OX=272562 GN=malH PE=1 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000051 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.