logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000002935_00576

You are here: Home > Sequence: MGYG000002935_00576

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Phocaeicola sp002161765
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Bacteroidaceae; Phocaeicola; Phocaeicola sp002161765
CAZyme ID MGYG000002935_00576
CAZy Family GH43
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
634 MGYG000002935_7|CGC2 70796.38 4.2429
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000002935 2727252 MAG Finland Europe
Gene Location Start: 21151;  End: 23055  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

EC 3.2.1.99

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH43 159 514 4.7e-88 0.9967741935483871

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd08998 GH43_Arb43a-like 1.68e-81 160 509 1 278
Glycosyl hydrolase family 43 protein such as Bacillus subtilis subsp. subtilis str. 168 endo-alpha-1,5-L-arabinanase Arb43A. This glycosyl hydrolase family 43 (GH43) subgroup belongs to the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. The GH43 ABN enzymes hydrolyze alpha-1,5-L-arabinofuranoside linkages while the ABF enzymes cleave arabinose side chains so that the combined actions of these two enzymes reduce arabinan to L-arabinose and/or arabinooligosaccharides. Many of these enzymes such as the Bacillus subtilis arabinanase Abn2, that hydrolyzes sugar beet arabinan (branched), linear alpha-1,5-L-arabinan and pectin, are different from other arabinases; they are organized into two different domains with a divalent metal cluster close to the catalytic residues to guarantee the correct protonation state of the catalytic residues and consequently the enzyme activity. These arabinan-degrading enzymes are important in the food industry for efficient production of L-arabinose from agricultural waste; L-arabinose is often used as a bioactive sweetener. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
cd18832 GH43_GsAbnA-like 1.36e-43 160 486 1 316
Glycosyl hydrolase family 43 protein such as Geobacillus stearothermophilus endo-alpha-1,5-L-arabinanase AbnA. This glycosyl hydrolase family 43 (GH43) subgroup includes mostly enzymes with alpha-L-arabinofuranosidase (ABF; EC 3.2.1.55) and endo-alpha-L-arabinanase (ABN; EC 3.2.1.99) activities. It includes Geobacillus stearothermophilus T-6 NCIMB 40222 AbnA, Bacillus subtilis subsp. subtilis str. 168 (Abn2;YxiA;J3A;BSU39330) (Arb43B), and Thermotoga petrophila RKU-1 (AbnA;TpABN;Tpet_0637). These are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. The GH43 ABN enzymes hydrolyze alpha-1,5-L-arabinofuranoside linkages while the ABF enzymes cleave arabinose side chains so that the combined actions of these two enzymes reduce arabinan to L-arabinose and/or arabinooligosaccharides. Many of these enzymes are different from other arabinases; they are organized into two different domains with a divalent metal cluster close to the catalytic residues to guarantee the correct protonation state of the catalytic residues and consequently the enzyme activity. These arabinan-degrading enzymes are important in the food industry for efficient production of L-arabinose from agricultural waste; L-arabinose is often used as a bioactive sweetener. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
cd18616 GH43_ABN-like 9.93e-36 162 477 10 261
Glycosyl hydrolase family 43 such as arabinan endo-1 5-alpha-L-arabinosidase. This glycosyl hydrolase family 43 (GH43) subgroup includes mostly enzymes with endo-alpha-L-arabinanase (ABN; EC 3.2.1.99) activity. These are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. The GH43 ABN enzymes hydrolyze alpha-1,5-L-arabinofuranoside linkages. These arabinan-degrading enzymes are important in the food industry for efficient production of L-arabinose from agricultural waste; L-arabinose is often used as a bioactive sweetener. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
cd18830 GH43_CjArb43A-like 4.40e-33 160 480 1 270
Glycosyl hydrolase family 43 protein such as Cellvibrio japonicus Ueda107 endo-alpha-1,5-L-arabinanase / exo-alpha-1,5-L-arabinanase 43A (ArbA;CJA_0805) (Arb43A). This glycosyl hydrolase family 43 (GH43) subgroup includes mostly enzymes annotated with alpha-L-arabinofuranosidase (ABF; EC 3.2.1.55) and endo-alpha-L-arabinanase (ABN; EC 3.2.1.99) activities, and includes the bifunctional Cellvibrio japonicus Ueda107 endo-alpha-1,5-L-arabinanase / exo-alpha-1,5-L-arabinanase 43A (ArbA;CJA_0805) (Arb43A). It belongs to the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. The GH43 ABN enzymes hydrolyze alpha-1,5-L-arabinofuranoside linkages while the ABF enzymes cleave arabinose side chains so that the combined actions of these two enzymes reduce arabinan to L-arabinose and/or arabinooligosaccharides. Many of these enzymes such as the Bacillus subtilis arabinanase Abn2, that hydrolyzes sugar beet arabinan (branched), linear alpha-1,5-L-arabinan and pectin, are different from other arabinases; they are organized into two different domains with a divalent metal cluster close to the catalytic residues to guarantee the correct protonation state of the catalytic residues and consequently the enzyme activity. These arabinan-degrading enzymes are important in the food industry for efficient production of L-arabinose from agricultural waste; L-arabinose is often used as a bioactive sweetener. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
pfam04616 Glyco_hydro_43 1.48e-28 161 514 11 281
Glycosyl hydrolases family 43. The glycosyl hydrolase family 43 contains members that are arabinanases. Arabinanases hydrolyze the alpha-1,5-linked L-arabinofuranoside backbone of plant cell wall arabinans. The structure of arabinanase Arb43A from Cellvibrio japonicus reveals a five-bladed beta-propeller fold. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QUT70641.1 1.26e-255 1 634 1 640
BCA49663.1 1.79e-255 1 634 1 640
QMW87414.1 5.10e-255 1 634 1 640
QQA06920.1 5.10e-255 1 634 1 640
QUT37946.1 5.10e-255 1 634 1 640

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1WL7_A 2.53e-29 155 514 16 310
Structureof the thermostable arabinanase [Geobacillus thermodenitrificans]
3CU9_A 6.63e-29 155 514 16 310
Highresolution crystal structure of 1,5-alpha-L-arabinanase from Geobacillus Stearothermophilus [Geobacillus stearothermophilus]
6A8I_A 7.61e-29 155 517 17 314
Crystalstructure of endo-arabinanase ABN-TS D147N mutant in complex with arabinohexaose [Geobacillus thermodenitrificans],6A8I_B Crystal structure of endo-arabinanase ABN-TS D147N mutant in complex with arabinohexaose [Geobacillus thermodenitrificans]
3LV4_A 1.38e-28 160 600 13 409
Crystalstructure of the glycoside hydrolase, family 43 YxiA protein from Bacillus licheniformis. Northeast Structural Genomics Consortium Target BiR14. [Bacillus licheniformis DSM 13 = ATCC 14580],3LV4_B Crystal structure of the glycoside hydrolase, family 43 YxiA protein from Bacillus licheniformis. Northeast Structural Genomics Consortium Target BiR14. [Bacillus licheniformis DSM 13 = ATCC 14580]
6A8H_A 1.91e-28 155 517 17 314
Crystalstructure of endo-arabinanase ABN-TS D27A mutant in complex with arabinotriose [Geobacillus thermodenitrificans]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q93HT9 1.41e-28 155 514 17 311
Intracellular endo-alpha-(1->5)-L-arabinanase OS=Geobacillus thermodenitrificans OX=33940 GN=abn-ts PE=1 SV=1
A5IKD4 3.69e-28 144 578 11 413
Extracellular endo-alpha-(1->5)-L-arabinanase OS=Thermotoga petrophila (strain ATCC BAA-488 / DSM 13995 / JCM 10881 / RKU-1) OX=390874 GN=Tpet_0637 PE=1 SV=1
B3EYM8 3.70e-28 155 514 17 311
Intracellular endo-alpha-(1->5)-L-arabinanase OS=Geobacillus stearothermophilus OX=1422 GN=abnB PE=1 SV=1
P42293 3.89e-27 159 542 35 388
Extracellular endo-alpha-(1->5)-L-arabinanase 2 OS=Bacillus subtilis (strain 168) OX=224308 GN=abn2 PE=1 SV=2
Q2UI74 1.11e-16 160 442 37 293
Probable arabinan endo-1,5-alpha-L-arabinosidase B OS=Aspergillus oryzae (strain ATCC 42149 / RIB 40) OX=510516 GN=abnB PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as LIPO

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
0.000000 0.000400 0.999652 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000002935_00576.