logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000002826_00138

You are here: Home > Sequence: MGYG000002826_00138

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species
Lineage Bacteria; Firmicutes; Bacilli; Lactobacillales; Streptococcaceae; Streptococcus;
CAZyme ID MGYG000002826_00138
CAZy Family GH38
CAZyme Description Mannosylglycerate hydrolase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
752 MGYG000002826_9|CGC1 85122.68 4.8065
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000002826 1064248 MAG Singapore Asia
Gene Location Start: 11283;  End: 13541  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

EC 3.2.1.-

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH38 2 146 1.1e-27 0.4758364312267658

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
COG0383 AMS1 0.0 1 751 130 943
Alpha-mannosidase [Carbohydrate transport and metabolism].
PRK09819 PRK09819 1.17e-84 2 747 131 874
mannosylglycerate hydrolase.
cd10814 GH38N_AMII_SpGH38_like 1.27e-76 1 158 126 271
N-terminal catalytic domain of SPGH38, a putative alpha-mannosidase of Streptococcus pyogenes, and its prokaryotic homologs; glycoside hydrolase family 38 (GH38). The subfamily is represented by SpGH38 of Streptococcus pyogenes, which has been assigned as a putative alpha-mannosidase, and is encoded by ORF spy1604. SpGH38 appears to exist as an elongated dimer and display alpha-1,3 mannosidase activity. It is active on disaccharides and some aryl glycosides. SpGH38 can also effectively deglycosylate human N-glycans in vitro. A divalent metal ion, such as a zinc ion, is required for its activity. SpGH38 is inhibited by swainsonine. The absence of any secretion signal peptide suggests that SpGH38 may be intracellular.
pfam18438 Glyco_hydro_38 6.23e-46 267 375 2 111
Glycosyl hydrolases family 38 C-terminal domain 1. The enzymatic hydrolysis of alpha-mannosides is catalyzed by glycoside hydrolases (GH), termed alpha-mannosidases. Streptococcal (Sp) GH38 alpha-mannosidase active on N-glycans and possibly O-glycans. SpGH38 structure can be considered as five domains: an N-terminal alpha/beta-domain, a three-helix bundle and three predominantly beta-sheet domains. This is the first of the three beta-sheet domains found in GH38, termed Beta-1. Structural analysis indicate that the beta-1 domain bows outward from the protein core, is involved in dimer interactions whilst also forming a lid 'above' and somewhat into the active centre of its dimer.
cd10790 GH38N_AMII_1 1.68e-41 1 158 125 273
N-terminal catalytic domain of putative prokaryotic class II alpha-mannosidases; glycoside hydrolase family 38 (GH38). This mainly bacterial subfamily corresponds to a group of putative class II alpha-mannosidases, including various proteins assigned as alpha-mannosidases, Streptococcus pyogenes (SpGH38) encoded by ORF spy1604. Escherichia coli MngB encoded by the mngB/ybgG gene, and Thermotoga maritime TMM, and similar proteins. SpGH38 targets alpha-1,3 mannosidic linkages. SpGH38 appears to exist as an elongated dimer and display alpha-1,3 mannosidase activity. It is active on disaccharides and some aryl glycosides. SpGH38 can also effectively deglycosylate human N-glycans in vitro. MngB exhibits alpha-mannosidase activity that catalyzes the conversion of 2-O-(6-phospho-alpha-mannosyl)-D-glycerate to mannose-6-phosphate and glycerate in the pathway which enables use of mannosyl-D-glycerate as a sole carbon source. TMM is a homodimeric enzyme that hydrolyzes p-nitrophenyl-alpha-D-mannopyranoside, alpha -1,2-mannobiose, alpha -1,3-mannobiose, alpha -1,4-mannobiose, and alpha -1,6-mannobiose. The GH38 family contains retaining glycosyl hydrolases that employ a two-step mechanism involving the formation of a covalent glycosyl enzyme complex. Two carboxylic acids positioned within the active site act in concert: one as a catalytic nucleophile and the other as a general acid/base catalyst. Divalent metal ions, such as zinc or cobalt ions, are suggested to be required for the catalytic activities of typical class II alpha-mannosidases. However, TMM requires the cobalt or cadmium for its activity. The cadmium ion dependency is unique to TMM. Moreover, TMM is inhibited by swainsonine but not 1-deoxymannojirimycin, which is in agreement with the features of cytosolic alpha-mannosidase.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AMP67633.1 0.0 1 752 130 881
VEE18733.1 0.0 1 752 130 881
VED66411.1 0.0 1 752 130 881
QXW96986.1 0.0 1 752 130 881
AEH56659.1 0.0 1 752 130 881

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
5KBP_A 1.81e-225 1 749 133 899
Thecrystal structure of an alpha-mannosidase from Enterococcus faecalis V583 [Enterococcus faecalis V583],5KBP_B The crystal structure of an alpha-mannosidase from Enterococcus faecalis V583 [Enterococcus faecalis V583]
3LVT_A 1.33e-219 2 749 134 899
TheCrystal Structure of a Protein in the Glycosyl Hydrolase Family 38 from Enterococcus faecalis to 2.55A [Enterococcus faecalis V583]
2WYH_A 1.83e-202 1 711 152 878
Structureof the Streptococcus pyogenes family GH38 alpha-mannosidase [Streptococcus pyogenes M1 GAS],2WYH_B Structure of the Streptococcus pyogenes family GH38 alpha-mannosidase [Streptococcus pyogenes M1 GAS],2WYI_A Structure of the Streptococcus pyogenes family GH38 alpha-mannosidase complexed with swainsonine [Streptococcus pyogenes M1 GAS],2WYI_B Structure of the Streptococcus pyogenes family GH38 alpha-mannosidase complexed with swainsonine [Streptococcus pyogenes M1 GAS]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q9KER1 3.82e-165 2 711 131 849
Putative mannosylglycerate hydrolase OS=Alkalihalobacillus halodurans (strain ATCC BAA-125 / DSM 18197 / FERM 7344 / JCM 9153 / C-125) OX=272558 GN=mngB PE=3 SV=2
P54746 1.62e-40 2 710 132 824
Mannosylglycerate hydrolase OS=Escherichia coli (strain K12) OX=83333 GN=mngB PE=1 SV=2

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
0.999981 0.000066 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000002826_00138.