logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000002648_00732

You are here: Home > Sequence: MGYG000002648_00732

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species UBA11549 sp900768185
Lineage Bacteria; Proteobacteria; Alphaproteobacteria; RF32; CAG-977; UBA11549; UBA11549 sp900768185
CAZyme ID MGYG000002648_00732
CAZy Family GT4
CAZyme Description Glycosyltransferase Gtf1
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
375 MGYG000002648_18|CGC1 43135.64 9.93
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000002648 1864710 MAG United Republic of Tanzania Africa
Gene Location Start: 14687;  End: 15814  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000002648_00732.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 192 344 6.6e-28 0.94375

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03820 GT4_AmsD-like 1.44e-55 19 365 21 351
amylovoran biosynthesis glycosyltransferase AmsD and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. AmSD in Erwinia amylovora has been shown to be involved in the biosynthesis of amylovoran, the acidic exopolysaccharide acting as a virulence factor. This enzyme may be responsible for the formation of galactose alpha-1,6 linkages in amylovoran.
cd03801 GT4_PimA-like 6.46e-41 19 367 22 365
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
cd03811 GT4_GT28_WabH-like 5.17e-35 15 360 16 351
family 4 and family 28 glycosyltransferases similar to Klebsiella WabH. This family is most closely related to the GT1 family of glycosyltransferases. WabH in Klebsiella pneumoniae has been shown to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the cellular outer core.
cd04949 GT4_GtfA-like 7.92e-34 163 363 130 328
accessory Sec system glycosyltransferase GtfA and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases and is named after gtfA in Streptococcus gordonii, where it plays a role in the O-linked glycosylation of GspB, a cell surface glycoprotein involved in platelet binding. In general glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found in bacteria.
cd03808 GT4_CapM-like 1.26e-33 15 347 14 340
capsular polysaccharide biosynthesis glycosyltransferase CapM and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. CapM in Staphylococcus aureus is required for the synthesis of type 1 capsular polysaccharides.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QHI68082.1 1.71e-143 1 370 1 370
QIM10310.1 1.53e-124 1 375 1 389
QTV78197.1 1.26e-55 90 367 115 386
AEB99367.1 7.74e-53 20 369 25 387
QNP77228.1 6.15e-48 1 375 1 397

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
7EC1_A 2.34e-15 112 367 239 494
ChainA, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC1_B Chain B, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC4_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC4_C Chain C, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC6_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC6_C Chain C, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFK_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFK_B Chain B, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFM_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFM_C Chain C, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFN_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFN_C Chain C, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300]
7EC3_A 2.34e-15 112 367 239 494
ChainA, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC3_C Chain C, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFL_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFL_C Chain C, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300]
7EC7_A 3.13e-15 173 367 296 493
ChainA, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC7_B Chain B, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFO_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFO_B Chain B, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300]
5D00_A 7.58e-10 246 369 249 374
Crystalstructure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate and UMP [Bacillus subtilis subsp. subtilis str. 168],5D00_B Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate and UMP [Bacillus subtilis subsp. subtilis str. 168],5D01_A Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate [Bacillus subtilis subsp. subtilis str. 168],5D01_B Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate [Bacillus subtilis subsp. subtilis str. 168]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P42982 4.12e-09 246 369 247 372
N-acetyl-alpha-D-glucosaminyl L-malate synthase OS=Bacillus subtilis (strain 168) OX=224308 GN=bshA PE=1 SV=2
Q0P9C9 9.72e-08 265 366 266 368
N,N'-diacetylbacillosaminyl-diphospho-undecaprenol alpha-1,3-N-acetylgalactosaminyltransferase OS=Campylobacter jejuni subsp. jejuni serotype O:2 (strain ATCC 700819 / NCTC 11168) OX=192222 GN=pglA PE=1 SV=1
P13484 4.48e-07 192 363 346 515
Poly(glycerol-phosphate) alpha-glucosyltransferase OS=Bacillus subtilis (strain 168) OX=224308 GN=tagE PE=1 SV=1
Q7LYW5 7.64e-06 185 347 221 388
Trehalose synthase OS=Thermococcus litoralis (strain ATCC 51850 / DSM 5473 / JCM 8560 / NS-C) OX=523849 GN=treT PE=1 SV=1
Q9HH00 7.64e-06 185 347 221 388
Trehalose synthase OS=Pyrococcus furiosus (strain ATCC 43587 / DSM 3638 / JCM 8422 / Vc1) OX=186497 GN=treT PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000044 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000002648_00732.