logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000002631_01174

You are here: Home > Sequence: MGYG000002631_01174

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Haemophilus_D sp900756875
Lineage Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacterales; Pasteurellaceae; Haemophilus_D; Haemophilus_D sp900756875
CAZyme ID MGYG000002631_01174
CAZy Family GT2
CAZyme Description UDP-Gal:alpha-D-GlcNAc-diphosphoundecaprenol beta-1,3-galactosyltransferase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
267 MGYG000002631_7|CGC2 30342.17 8.327
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000002631 1889219 MAG China Asia
Gene Location Start: 25375;  End: 26178  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000002631_01174.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 4 169 4.5e-29 0.9529411764705882

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd04195 GT2_AmsE_like 4.71e-117 4 203 1 201
GT2_AmsE_like is involved in exopolysaccharide amylovora biosynthesis. AmsE is a glycosyltransferase involved in exopolysaccharide amylovora biosynthesis in Erwinia amylovora. Amylovara is one of the three exopolysaccharide produced by E. amylovora. Amylovara-deficient mutants are non-pathogenic. It is a subfamily of Glycosyltransferase Family GT2, which includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds.
pfam00535 Glycos_transf_2 7.15e-28 4 135 1 130
Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids.
cd00761 Glyco_tranf_GTA_type 1.99e-21 15 120 9 114
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities.
COG0463 WcaA 3.31e-16 1 267 3 291
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd06433 GT_2_WfgS_like 2.59e-15 14 205 9 196
WfgS and WfeV are involved in O-antigen biosynthesis. Escherichia coli WfgS and Shigella dysenteriae WfeV are glycosyltransferase 2 family enzymes involved in O-antigen biosynthesis. GT-2 enzymes have GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QOR09610.1 3.87e-195 1 267 1 267
QOR05928.1 3.87e-195 1 267 1 267
VEI31965.1 1.57e-194 1 267 1 267
QOR07764.1 4.52e-194 1 267 1 267
QOR20567.1 6.41e-194 1 267 1 267

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
3BCV_A 7.04e-06 2 119 6 120
Crystalstructure of a putative glycosyltransferase from Bacteroides fragilis [Bacteroides fragilis NCTC 9343],3BCV_B Crystal structure of a putative glycosyltransferase from Bacteroides fragilis [Bacteroides fragilis NCTC 9343]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q48215 6.33e-170 1 267 1 267
Uncharacterized glycosyltransferase HI_1695 OS=Haemophilus influenzae (strain ATCC 51907 / DSM 11121 / KW20 / Rd) OX=71421 GN=HI_1695 PE=3 SV=2
Q46635 1.14e-77 3 263 2 262
Amylovoran biosynthesis glycosyltransferase AmsE OS=Erwinia amylovora OX=552 GN=amsE PE=3 SV=2
Q03084 2.63e-47 2 267 7 273
UDP-Gal:alpha-D-GlcNAc-diphosphoundecaprenol beta-1,3-galactosyltransferase OS=Escherichia coli OX=562 GN=wbbD PE=1 SV=1
Q58457 1.41e-13 4 206 11 215
Uncharacterized glycosyltransferase MJ1057 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) OX=243232 GN=MJ1057 PE=3 SV=2
Q4KXC9 1.27e-10 16 206 20 211
O-antigen biosynthesis glycosyltransferase WbnJ OS=Escherichia coli OX=562 GN=wbnJ PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000071 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000002631_01174.