logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000002631_00389

You are here: Home > Sequence: MGYG000002631_00389

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Haemophilus_D sp900756875
Lineage Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacterales; Pasteurellaceae; Haemophilus_D; Haemophilus_D sp900756875
CAZyme ID MGYG000002631_00389
CAZy Family GT2
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
354 MGYG000002631_2|CGC5 41708.74 8.749
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000002631 1889219 MAG China Asia
Gene Location Start: 156361;  End: 157425  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000002631_00389.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 8 136 1.5e-27 0.7529411764705882

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd00761 Glyco_tranf_GTA_type 3.07e-27 9 121 1 112
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities.
pfam00535 Glycos_transf_2 4.43e-27 8 129 1 121
Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids.
PRK10073 PRK10073 4.51e-21 1 97 2 96
putative glycosyl transferase; Provisional
cd04196 GT_2_like_d 4.05e-20 8 124 1 123
Subfamily of Glycosyltransferase Family GT2 of unknown function. GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families.
cd04184 GT2_RfbC_Mx_like 1.31e-19 6 162 2 159
Myxococcus xanthus RfbC like proteins are required for O-antigen biosynthesis. The rfbC gene encodes a predicted protein of 1,276 amino acids, which is required for O-antigen biosynthesis in Myxococcus xanthus. It is a subfamily of Glycosyltransferase Family GT2, which includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QOR13737.1 7.63e-155 6 354 5 353
QSZ39521.1 6.33e-145 1 353 1 355
SNV40334.1 2.62e-139 1 354 1 356
AIJ32374.1 2.62e-139 1 354 1 356
ADP10992.1 1.97e-55 7 274 14 277

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
5HEA_A 5.30e-26 1 264 1 279
CgTstructure in hexamer [Streptococcus parasanguinis FW213],5HEA_B CgT structure in hexamer [Streptococcus parasanguinis FW213],5HEA_C CgT structure in hexamer [Streptococcus parasanguinis FW213],5HEC_A CgT structure in dimer [Streptococcus parasanguinis FW213],5HEC_B CgT structure in dimer [Streptococcus parasanguinis FW213]
3BCV_A 5.85e-11 7 101 7 98
Crystalstructure of a putative glycosyltransferase from Bacteroides fragilis [Bacteroides fragilis NCTC 9343],3BCV_B Crystal structure of a putative glycosyltransferase from Bacteroides fragilis [Bacteroides fragilis NCTC 9343]
6P61_A 6.81e-11 7 129 15 134
Structureof a Glycosyltransferase from Leptospira borgpetersenii serovar Hardjo-bovis (strain JB197) [Leptospira borgpetersenii serovar Hardjo-bovis str. JB197],6P61_B Structure of a Glycosyltransferase from Leptospira borgpetersenii serovar Hardjo-bovis (strain JB197) [Leptospira borgpetersenii serovar Hardjo-bovis str. JB197],6P61_C Structure of a Glycosyltransferase from Leptospira borgpetersenii serovar Hardjo-bovis (strain JB197) [Leptospira borgpetersenii serovar Hardjo-bovis str. JB197],6P61_D Structure of a Glycosyltransferase from Leptospira borgpetersenii serovar Hardjo-bovis (strain JB197) [Leptospira borgpetersenii serovar Hardjo-bovis str. JB197]
2Z86_A 1.29e-09 1 98 371 466
Crystalstructure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GlcUA and UDP [Escherichia coli],2Z86_B Crystal structure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GlcUA and UDP [Escherichia coli],2Z86_C Crystal structure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GlcUA and UDP [Escherichia coli],2Z86_D Crystal structure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GlcUA and UDP [Escherichia coli]
2Z87_A 1.29e-09 1 98 370 465
Crystalstructure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GalNAc and UDP [Escherichia coli],2Z87_B Crystal structure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GalNAc and UDP [Escherichia coli]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
A0A0H2UR96 1.75e-17 6 222 4 223
Glycosyltransferase GlyG OS=Streptococcus pneumoniae serotype 4 (strain ATCC BAA-334 / TIGR4) OX=170187 GN=glyG PE=1 SV=1
P71059 3.31e-16 6 223 4 221
Uncharacterized glycosyltransferase EpsJ OS=Bacillus subtilis (strain 168) OX=224308 GN=epsJ PE=2 SV=1
A0A0H2URH7 9.25e-16 7 223 7 225
Glycosyltransferase GlyA OS=Streptococcus pneumoniae serotype 4 (strain ATCC BAA-334 / TIGR4) OX=170187 GN=glyA PE=3 SV=1
P71057 6.89e-15 7 260 6 264
Putative glycosyltransferase EpsH OS=Bacillus subtilis (strain 168) OX=224308 GN=epsH PE=2 SV=1
Q57287 8.75e-14 1 227 1 228
Uncharacterized glycosyltransferase HI_1578 OS=Haemophilus influenzae (strain ATCC 51907 / DSM 11121 / KW20 / Rd) OX=71421 GN=HI_1578 PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000007 0.000043 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000002631_00389.