Species | Faecalibacterium prausnitzii_J | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Firmicutes_A; Clostridia; Oscillospirales; Ruminococcaceae; Faecalibacterium; Faecalibacterium prausnitzii_J | |||||||||||
CAZyme ID | MGYG000002619_02488 | |||||||||||
CAZy Family | GH36 | |||||||||||
CAZyme Description | hypothetical protein | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 20578; End: 22179 Strand: + |
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GH36 | 188 | 511 | 6.3e-58 | 0.4694767441860465 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
cd14791 | GH36 | 4.78e-75 | 200 | 495 | 5 | 292 | glycosyl hydrolase family 36 (GH36). GH36 enzymes occur in prokaryotes, eukaryotes, and archaea with a wide range of hydrolytic activities, including alpha-galactosidase, alpha-N-acetylgalactosaminidase, stachyose synthase, and raffinose synthase. All GH36 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. GH36 members are retaining enzymes that cleave their substrates via an acid/base-catalyzed, double-displacement mechanism involving a covalent glycosyl-enzyme intermediate. Two aspartic acid residues have been identified as the catalytic nucleophile and the acid/base, respectively. |
COG3345 | GalA | 1.86e-35 | 200 | 525 | 295 | 654 | Alpha-galactosidase [Carbohydrate transport and metabolism]. |
pfam02065 | Melibiase | 1.11e-22 | 232 | 383 | 74 | 238 | Melibiase. Glycoside hydrolase families GH27, GH31 and GH36 form the glycoside hydrolase clan GH-D. Glycoside hydrolase family 36 can be split into 11 families, GH36A to GH36K. This family includes enzymes from GH36A-B and GH36D-K and from GH27. |
cd06592 | GH31_NET37 | 4.86e-17 | 229 | 346 | 33 | 151 | glucosidase NET37. NET37 (also known as KIAA1161) is a human lamina-associated nuclear envelope transmembrane protein. A member of the glycosyl hydrolase family 31 (GH31) , it has been shown to be required for myogenic differentiation of C2C12 cells. Related proteins are found in eukaryotes and prokaryotes. Enzymes of the GH31 family possess a wide range of different hydrolytic activities including alpha-glucosidase (glucoamylase and sucrase-isomaltase), alpha-xylosidase, 6-alpha-glucosyltransferase, 3-alpha-isomaltosyltransferase and alpha-1,4-glucan lyase. All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. |
cd14792 | GH27 | 3.13e-13 | 200 | 411 | 4 | 189 | glycosyl hydrolase family 27 (GH27). GH27 enzymes occur in eukaryotes, prokaryotes, and archaea with a wide range of hydrolytic activities, including alpha-glucosidase (glucoamylase and sucrase-isomaltase), alpha-N-acetylgalactosaminidase, and 3-alpha-isomalto-dextranase. All GH27 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. GH27 members are retaining enzymes that cleave their substrates via an acid/base-catalyzed, double-displacement mechanism involving a covalent glycosyl-enzyme intermediate. Two aspartic acid residues have been identified as the catalytic nucleophile and the acid/base, respectively. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
ATL89254.1 | 0.0 | 1 | 533 | 1 | 533 |
ATO98961.1 | 0.0 | 1 | 533 | 1 | 533 |
QIA42637.1 | 0.0 | 1 | 533 | 1 | 533 |
AXB28857.1 | 0.0 | 1 | 531 | 1 | 531 |
CBL02557.1 | 1.04e-178 | 261 | 531 | 1 | 271 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
6LCJ_A | 1.26e-42 | 171 | 483 | 134 | 438 | TtGalA,alpha-galactosidase from Thermus thermopilus in apo form [Thermus thermophilus HB8],6LCJ_B TtGalA, alpha-galactosidase from Thermus thermopilus in apo form [Thermus thermophilus HB8],6LCJ_C TtGalA, alpha-galactosidase from Thermus thermopilus in apo form [Thermus thermophilus HB8],6LCJ_D TtGalA, alpha-galactosidase from Thermus thermopilus in apo form [Thermus thermophilus HB8],6LCJ_E TtGalA, alpha-galactosidase from Thermus thermopilus in apo form [Thermus thermophilus HB8],6LCJ_F TtGalA, alpha-galactosidase from Thermus thermopilus in apo form [Thermus thermophilus HB8],6LCK_A TtGalA, alpha-galactosidase from Thermus thermophilus in complex with p-nitrophenyl alpha-D-galactopyranoside (alpha-NPG) [Thermus thermophilus HB8],6LCK_B TtGalA, alpha-galactosidase from Thermus thermophilus in complex with p-nitrophenyl alpha-D-galactopyranoside (alpha-NPG) [Thermus thermophilus HB8],6LCK_C TtGalA, alpha-galactosidase from Thermus thermophilus in complex with p-nitrophenyl alpha-D-galactopyranoside (alpha-NPG) [Thermus thermophilus HB8],6LCL_A TtGalA, alpha-galactosidase from Thermus thermophilus in complex with stachyose [Thermus thermophilus HB8],6LCL_C TtGalA, alpha-galactosidase from Thermus thermophilus in complex with stachyose [Thermus thermophilus HB8],6LCL_E TtGalA, alpha-galactosidase from Thermus thermophilus in complex with stachyose [Thermus thermophilus HB8] |
5M0X_A | 4.70e-41 | 199 | 480 | 208 | 484 | Structureof apo structure of GH36 alpha-galactosidase from Thermotoga maritima [Thermotoga maritima],5M12_A Structure of GH36 alpha-galactosidase from Thermotoga maritima in complex with intact cyclopropyl-carbasugar. [Thermotoga maritima],5M16_A Structure of GH36 alpha-galactosidase from Thermotoga maritima in complex with a hydrolysed cyclopropyl carbasugar. [Thermotoga maritima],5M1I_A Structure of GH36 alpha-galactosidase from Thermotoga maritima in a covalent complex with a cyclopropyl carbasugar. [Thermotoga maritima],6GVD_A Alpha-galactosidase from Thermotoga maritima in complex with cyclohexene-based carbasugar mimic of galactose [Thermotoga maritima MSB8],6GWG_A Alpha-galactosidase from Thermotoga maritima in complex with cyclohexene-based carbasugar mimic of galactose covalently linked to the nucleophile [Thermotoga maritima MSB8],6GX8_A Alpha-galactosidase from Thermotoga maritima in complex with hydrolysed cyclohexene-based carbasugar mimic of galactose [Thermotoga maritima MSB8] |
6GTA_A | 5.76e-40 | 199 | 480 | 208 | 484 | Alpha-galactosidasemutant D378A from Thermotoga maritima in complex with intact cyclohexene-based carbasugar mimic of galactose with 3,5 difluorophenyl leaving group [Thermotoga maritima MSB8],6GWF_A Alpha-galactosidase mutant D387A from Thermotoga maritima in complex with intact cyclohexene-based carbasugar mimic of galactose with 2,4-dinitro leaving group [Thermotoga maritima MSB8] |
1ZY9_A | 1.29e-39 | 199 | 480 | 197 | 473 | Crystalstructure of Alpha-galactosidase (EC 3.2.1.22) (Melibiase) (tm1192) from Thermotoga maritima at 2.34 A resolution [Thermotoga maritima] |
6PHU_A | 2.02e-17 | 231 | 355 | 375 | 502 | SpAgawild type apo structure [Streptococcus pneumoniae TIGR4],6PHV_A Chain A, Alpha-galactosidase [Streptococcus pneumoniae TIGR4] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
G4FEF4 | 1.92e-40 | 199 | 480 | 185 | 461 | Alpha-galactosidase OS=Thermotoga maritima (strain ATCC 43589 / DSM 3109 / JCM 10099 / NBRC 100826 / MSB8) OX=243274 GN=galA PE=1 SV=1 |
P16551 | 2.92e-20 | 192 | 372 | 287 | 472 | Alpha-galactosidase OS=Escherichia coli OX=562 GN=rafA PE=1 SV=1 |
P27756 | 2.39e-15 | 231 | 370 | 355 | 491 | Alpha-galactosidase OS=Streptococcus mutans serotype c (strain ATCC 700610 / UA159) OX=210007 GN=aga PE=3 SV=3 |
P43467 | 1.72e-14 | 231 | 345 | 363 | 480 | Alpha-galactosidase 1 OS=Pediococcus pentosaceus OX=1255 GN=agaR PE=3 SV=1 |
Q9ALJ4 | 2.13e-13 | 231 | 373 | 361 | 516 | Alpha-galactosidase AgaA OS=Geobacillus stearothermophilus OX=1422 GN=agaA PE=1 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000061 | 0.000001 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.